Analysis and Characterization of Multi-Phase Systems with Application to Optimal Design

多相系统的分析和表征及其在优化设计中的应用

基本信息

  • 批准号:
    9700638
  • 负责人:
  • 金额:
    $ 7.41万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-15 至 2000-07-31
  • 项目状态:
    已结题

项目摘要

9700638 Lipton The analysis and optimal design of multi-phase systems is central to the development of advanced materials for use in electronics, transportation systems, and aerospace applications. From the perspective of human physiology it is critical to understand transport phenomena in complex biological systems. This project addresses areas where improved knowledge of transport properties for multi-phase systems will have a large impact on technology. A significant part of this project focuses on the behavior of composites with imperfectly bonded components. Imperfect bonding between constituents is often the rule. Imperfect bonds are frequently the result of damage to the structure incurred during use. The first project treats the design of fiber reinforced materials in the presence of imperfect bonding between the fiber and the matrix material. The goal is to provide rigorous design rules for the optimal performance of imperfectly bonded fiber reinforced structures. We consider next the transmission of oscillating electric signals through structural materials possessing imperfectly bonded constituents. We look for new mathematical methods that will deliver structural information from the transmitted signal. These methods will rely on the physics of the imperfect bond separating the constituents. The third project treats the transport of ions in a biological system. The goal is to understand the effect of cell geometry on the ionic transport within living tissue. Last, the small geometries necessary for the layout of very large scale integrated circuits incur high concentrations of the electric field along conducting paths. These concentrations often result in the failure of an electronic devise such as a microprocessor. The conducting paths are often made from aluminum alloys of three or more materials. We seek the best geometries among multi- phase conductors so as to minimize electric field concentrations. The analysis and o ptimal design of multi-phase materials is central to the development of advanced materials for use in electronics, transportation systems, and aerospace structures. From the perspective of human physiology it is critical to understand transport phenomena in complex biological structures. This project addresses areas where improved knowledge of transport properties for multi-phase structures will have impact on technology and medicine. Fiber reinforced structures appear in many applications ranging from golf clubs to the rotors on windmills. Over time the adhesion between the fibers and the surrounding material is compromised by use. We investigate the optimal design of such structures taking into account the imperfect adhesion between fiber and surrounding material. Our goal is to design more durable products that last longer than conventional fiber reinforced products. Next, we investigate how to reduce the failure of microelectronic devices due to high concentrations of electric current. The small geometries used in the layout of integrated circuits require very narrow strips of metal to conduct electric currents. These strips often fail because of the high volume of current that they carry. The conducting strips are often made from a mixture of Aluminum, Copper , and Silicon. We seek the best deployment of the Copper and Silicon in the metal strip to prevent failure. Last, we attempt an improved characterization of inter cellular ionic transport. From the stand point of human physiology, an understanding of such transport for human brain cells may offer early detection of the extent of damage caused by stroke.
9700638立顿多相系统的分析和优化设计是开发用于电子、运输系统和航空航天应用的先进材料的核心。从人体生理学的角度来理解复杂生物系统中的输运现象是至关重要的。该项目涉及对多相系统传输特性的改进将对技术产生重大影响的领域。该项目的一个重要部分集中在具有不完美粘结部件的复合材料的行为上。选民之间不完美的结合往往是规则。不完美的粘结通常是由于在使用过程中对结构造成的损坏。第一个项目是在纤维和基质材料之间存在不完美粘结的情况下处理纤维增强材料的设计。其目的是为非理想粘结纤维增强结构的最佳性能提供严格的设计准则。接下来,我们考虑振荡电信号通过具有不完全结合成分的结构材料的传输。我们寻找新的数学方法,从传输的信号中传递结构信息。这些方法将依赖于分离成分的不完美键的物理原理。第三个项目是研究离子在生物系统中的传输。其目的是了解细胞几何形状对活组织内离子传输的影响。最后,布局超大规模集成电路所需的小几何形状导致沿传导路径的电场高度集中。这些集中经常导致诸如微处理器之类的电子设备的故障。导电路径通常由三种或三种以上材料的铝合金制成。我们在多相导体中寻找最佳的几何形状,以最小化电场集中。多相材料的分析和优化设计是开发用于电子、运输系统和航空航天结构的先进材料的核心。从人体生理学的角度理解复杂生物结构中的输运现象是至关重要的。该项目致力于改善对多相结构的传输性质的了解将对技术和医学产生影响的领域。纤维增强结构出现在许多应用中,从高尔夫球杆到风车的转子。随着时间的推移,纤维和周围材料之间的粘合力会因使用而受损。在考虑纤维与周围材料之间不完全粘结的情况下,我们研究了这种结构的优化设计。我们的目标是设计更耐用的产品,比传统的纤维增强产品更耐用。接下来,我们研究如何减少由于电流高度集中而导致的微电子器件的失效。集成电路布局中使用的小几何形状需要非常窄的金属条来传导电流。这些断路器经常失效,因为它们携带的电流很大。导电带通常由铝、铜和硅的混合物制成。我们寻求铜和硅在金属带材中的最佳配置,以防止故障。最后,我们尝试了一种改进的细胞间离子传输的表征。从人类生理学的角度来看,了解人类脑细胞的这种运输可能有助于及早发现中风造成的损害程度。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Lipton其他文献

A comparative review of peridynamics and phase-field models for engineering fracture mechanics
  • DOI:
    10.1007/s00466-022-02147-0
  • 发表时间:
    2022-02-18
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Patrick Diehl;Robert Lipton;Thomas Wick;Mayank Tyagi
  • 通讯作者:
    Mayank Tyagi
Anisotropy and Dynamic Ranges in Effective Properties of Sheared Nematic Polymer Nanocomposites
剪切向列聚合物纳米复合材料有效性能的各向异性和动态范围
  • DOI:
    10.1002/adfm.200500272
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    19
  • 作者:
    M. Gregory Forest;Xiaoyu Zheng;R. Zhou;Qi Wang;Robert Lipton
  • 通讯作者:
    Robert Lipton
Exact Scaling Laws for Electrical Conductivity Properties of Nematic Polymer Nanocomposite Monodomains
向列聚合物纳米复合材料单域电导率的精确缩放定律
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaoyu Zheng;M. Gregory Forest;Robert Lipton;R. Zhou;Qi Wang
  • 通讯作者:
    Qi Wang
The penetration function and its application to microscale problems THANKSREF="*" ID="*"Communicated by Claes Johnson.
  • DOI:
    10.1007/s10543-008-0182-z
  • 发表时间:
    2008-07-17
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Ivo Babuška;Robert Lipton;Michael Stuebner
  • 通讯作者:
    Michael Stuebner
Erratum to: Cohesive Dynamics and Brittle Fracture
  • DOI:
    10.1007/s10659-016-9588-z
  • 发表时间:
    2016-08-16
  • 期刊:
  • 影响因子:
    1.400
  • 作者:
    Robert Lipton
  • 通讯作者:
    Robert Lipton

Robert Lipton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Lipton', 18)}}的其他基金

DMREF/Collaborative Research: Designing Mutable Metamaterials with Photo-Adaptive Meta-Atoms
DMREF/合作研究:利用光自适应元原子设计可变超材料
  • 批准号:
    1921707
  • 财政年份:
    2019
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
SIAM TX-LA Section Meeting
SIAM TX-LA 分会会议
  • 批准号:
    1833601
  • 财政年份:
    2018
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Structural Spectra and Applications to Heterogeneous Media
结构谱及其在异质介质中的应用
  • 批准号:
    1813698
  • 财政年份:
    2018
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Mathematical and Computational Aspects of Materials Science
材料科学的数学和计算方面
  • 批准号:
    1437609
  • 财政年份:
    2014
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Collaborative Research: Extraction of local strain and stress
合作研究:提取局部应变和应力
  • 批准号:
    1211066
  • 财政年份:
    2012
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Multi-scale analysis of field behavior inside heterogeneous media for local and nonlocal continuum theories
局部和非局部连续介质理论的异质介质内场行为的多尺度分析
  • 批准号:
    0807265
  • 财政年份:
    2008
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Stress Analysis in Composite Structures
复合结构中的应力分析
  • 批准号:
    0406374
  • 财政年份:
    2004
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Continuing Grant
Optimal Design of Materials, Structures, and Devices
材料、结构和器件的优化设计
  • 批准号:
    0296064
  • 财政年份:
    2001
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Optimal Design of Materials, Structures, and Devices
材料、结构和器件的优化设计
  • 批准号:
    0072469
  • 财政年份:
    2000
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analysis of Transport Properties for Composites and Multi-Phase Flows with Application to Optimal Design
数学科学:复合材料和多相流的传输特性分析及其在优化设计中的应用
  • 批准号:
    9403866
  • 财政年份:
    1994
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: Learning Microstructure- and Temperature-Dependencies of Grain Boundary Plastic Deformation Localization via Multi-modal In situ Characterization
合作研究:通过多模态原位表征学习晶界塑性变形局部化的微观结构和温度依赖性
  • 批准号:
    2234892
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Continuing Grant
WoU-MMA: Enabling Multi-Messenger Astrophysics with Advanced LIGO: from Detector Characterization to Interpretation of Gravitational-Wave Signals
WoU-MMA:利用先进的 LIGO 实现多信使天体物理学:从探测器表征到引力波信号的解释
  • 批准号:
    2308693
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Standard Grant
Multi-method investigation and characterization of the ocular microbiome
眼部微生物组的多方法研究和表征
  • 批准号:
    10660691
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
Collaborative Research: Learning Microstructure- and Temperature-Dependencies of Grain Boundary Plastic Deformation Localization via Multi-modal In situ Characterization
合作研究:通过多模态原位表征学习晶界塑性变形局部化的微观结构和温度依赖性
  • 批准号:
    2234891
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Continuing Grant
Characterization of TMEM164 as novel multi-pass transmembrane enzyme and its role in ferroptosis
TMEM164作为新型多次跨膜酶的表征及其在铁死亡中的作用
  • 批准号:
    10607957
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
Multi-omic characterization of memory B cell reprogramming during oral immunotherapy and outgrowth of food allergy
口服免疫治疗期间记​​忆 B 细胞重编程和食物过敏的多组学特征
  • 批准号:
    498188
  • 财政年份:
    2023
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Operating Grants
A prospective and retrospective multi-center, cohort study for clinical, virologic and immunologic characterization of monkeypox virus clade IIb by the International Monkeypox Response Consortium (IMREC)
国际猴痘反应联盟 (IMREC) 对猴痘病毒 clade IIb 的临床、病毒学和免疫学特征进行了一项前瞻性和回顾性多中心队列研究
  • 批准号:
    471094
  • 财政年份:
    2022
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Operating Grants
Multi-scale characterization of molecular and connectomic vulnerability to AD pathology
AD 病理学的分子和连接组脆弱性的多尺度表征
  • 批准号:
    473598
  • 财政年份:
    2022
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Fellowship Programs
Multi-Molecular Characterization of Complex Matrices for the Detection of Geochemical Processes
用于地球化学过程检测的复杂基质的多分子表征
  • 批准号:
    RGPIN-2018-06147
  • 财政年份:
    2022
  • 资助金额:
    $ 7.41万
  • 项目类别:
    Discovery Grants Program - Individual
Project 1: Multi-omic characterization of human nociceptors
项目 1:人类伤害感受器的多组学表征
  • 批准号:
    10594336
  • 财政年份:
    2022
  • 资助金额:
    $ 7.41万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了