Linear Programming: Condition, Knowledge & Complexity

线性规划:条件、知识

基本信息

  • 批准号:
    9703490
  • 负责人:
  • 金额:
    $ 8.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 2001-06-30
  • 项目状态:
    已结题

项目摘要

Yinyu Ye Complexity theory is the foundation of computer algorithms. The goal of the theory is to develop criteria for measuring effectiveness and efficiency of various algorithms and difficulty of various problems. The term ``complexity'' refers to the amount of resources required by a computation. In this proposal, running time or number of arithmetic operations is the major resource of interest. The aim of the proposal is to further develop the complexity theory of linear programming (LP). In particular, we analyze ``condition'' numbers that determine the degree of difficulty of an LP problem, and ``precondition'' the problem using Partial Knowledge. Therefore, we study whether or not certain kinds of partial knowledge could help in solving this problem and how they impact the complexity of the problem. If such knowledge is helpful and available, then an experienced owner of LP problem instances might be able to use it to solve them more effectively. In general, progress in the area of developing efficient algorithms for solving large-scale optimization problems will be of great importance in improving the efficiency of manufacturing systems, communication networks, aircraft routing, multiple-flow operations, and resources planning. Strengthening research in this area will contribute to the national interest in industrial competitiveness and scientific knowledge. Businesses, large and small, use LP models to optimize telecommunication networks, to schedule traffic flows, to control manufacturing processes, to plan financial investments, to minimize production costs, etc. LP has been the mostly used applied mathematics and computation tool. Historically, research developments on LP have dramatically widened the scope of its applications. Many problems, which were "unsolvable" 15 years ago, are now solved in few minutes and in real time. The anticipated findings and discoveries resulting from this proposed project will strengthen and improve theoretical results and practical performance of LP algorithms further, and may lead to the development of new high-performance algorithms for a variety of computational problems.
复杂性理论是计算机算法的基础。该理论的目标是制定衡量各种算法的有效性和效率以及各种问题的难度的标准。术语“复杂性”指的是计算所需的资源量。在这个建议中,运行时间或算术运算的数量是主要的资源。本研究旨在进一步发展线性规划(LP)的复杂性理论。特别是,我们分析了决定LP问题难易程度的“条件”数,并使用部分知识对问题进行了“先决条件”。因此,我们研究某些类型的部分知识是否有助于解决这个问题,以及它们如何影响问题的复杂性。如果这些知识有用且可用,那么经验丰富的LP问题实例所有者可能能够使用这些知识更有效地解决问题。总的来说,在开发求解大规模优化问题的高效算法方面取得进展,对于提高制造系统、通信网络、飞机路线、多流程操作和资源规划的效率将具有重要意义。加强这一领域的研究将有助于提高国家在产业竞争力和科学知识方面的利益。企业,无论大小,都使用LP模型来优化电信网络,调度流量,控制制造过程,计划金融投资,最大限度地降低生产成本等。LP已经成为应用最广泛的数学和计算工具。从历史上看,LP的研究进展极大地扩大了其应用范围。许多15年前“无法解决”的问题,现在可以在几分钟内实时解决。该项目的预期结果和发现将进一步加强和改进LP算法的理论结果和实际性能,并可能导致针对各种计算问题的新的高性能算法的发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yinyu Ye其他文献

Linear operators and positive semidefiniteness of symmetric tensor spaces
对称张量空间的线性算子和半正定性
  • DOI:
    10.1007/s11425-014-4930-z
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ziyan Luo;Liqun Qi;Yinyu Ye
  • 通讯作者:
    Yinyu Ye
Extended ADMM and BCD for nonseparable convex minimization models with quadratic coupling terms: convergence analysis and insights
  • DOI:
    DOI 10.1007/s10107-017-1205-9
  • 发表时间:
  • 期刊:
  • 影响因子:
  • 作者:
    Caihua Chen;Min Li;Xin Li;Yinyu Ye
  • 通讯作者:
    Yinyu Ye
Interior point algorithms: theory and analysis
Scalable Approximate Optimal Diagonal Preconditioning
可扩展的近似最佳对角线预处理
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenzhi Gao;Zhaonan Qu;Madeleine Udell;Yinyu Ye
  • 通讯作者:
    Yinyu Ye
Identifying an optimal basis in linear programming
  • DOI:
    10.1007/bf02206830
  • 发表时间:
    1996-12-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Stephen A. Vavasis;Yinyu Ye
  • 通讯作者:
    Yinyu Ye

Yinyu Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yinyu Ye', 18)}}的其他基金

GOALI: Region Partitioning
目标:区域划分
  • 批准号:
    0800151
  • 财政年份:
    2008
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Exchange Market Equilibrium and Auction Pricing
交易市场均衡与拍卖定价
  • 批准号:
    0604513
  • 财政年份:
    2006
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Markov Decision Problem and Linear Programming
马尔可夫决策问题和线性规划
  • 批准号:
    0306611
  • 财政年份:
    2003
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Semidefinite Programming and Approximation Algorithms
半定规划和近似算法
  • 批准号:
    0231600
  • 财政年份:
    2002
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Continuing Grant
Semidefinite Programming and Approximation Algorithms
半定规划和近似算法
  • 批准号:
    9908077
  • 财政年份:
    1999
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Continuing Grant
Interior-Point Algorithms: Theories and Applications
内点算法:理论与应用
  • 批准号:
    9522507
  • 财政年份:
    1995
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Interior-point Algorithms - Complexity Issues and Practical Concerns
内点算法 - 复杂性问题和实际问题
  • 批准号:
    9207347
  • 财政年份:
    1992
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
A Potential Reduction Algorithm Allowing Column Generation
允许生成列的潜在减少算法
  • 批准号:
    8922636
  • 财政年份:
    1990
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Continuing Grant

相似海外基金

Participant Support for the Kahramanmaraş, Turkey, Earthquake Sequence One-year Anniversary Programming at the 2024 EERI Annual Meeting; Seattle, Washington; 9-12 April 2024
在 2024 年 EERI 年会上为土耳其卡赫拉曼马拉地震一周年纪念活动提供支持;
  • 批准号:
    2418579
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
SHF: SMALL: A New Semantics for Type-Level Programming in Haskell
SHF:SMALL:Haskell 中类型级编程的新语义
  • 批准号:
    2345580
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Overcoming Programming Barriers for Non-Computing Majors in Data Science
克服数据科学非计算专业的编程障碍
  • 批准号:
    2336929
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321045
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Unlocking Students Potential in Programming with Coding Bootcamps
通过编码训练营释放学生的编程潜力
  • 批准号:
    2345072
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
A Holistic Approach to Improve Learning and Motivation in Introductory Programming with Automated Grading, Web-based Team Support, and Game Development
通过自动评分、基于网络的团队支持和游戏开发提高入门编程学习和动机的整体方法
  • 批准号:
    2345097
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Continuing Grant
Collaborative Research: CyberTraining: Implementation: Medium: Transforming the Molecular Science Research Workforce through Integration of Programming in University Curricula
协作研究:网络培训:实施:中:通过将编程融入大学课程来改变分子科学研究人员队伍
  • 批准号:
    2321044
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
Applying a Program Science approach for strengthening partnerships and advancing embedded research to optimize public health programming for HIV and sexually transmitted and blood-borne infections among criminalized populations in the Global South
应用计划科学方法来加强伙伴关系并推进嵌入式研究,以优化南半球犯罪人群中针对艾滋病毒、性传播和血源性感染的公共卫生规划
  • 批准号:
    502554
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
CNS Core: Small: Core Scheduling Techniques and Programming Abstractions for Scalable Serverless Edge Computing Engine
CNS Core:小型:可扩展无服务器边缘计算引擎的核心调度技术和编程抽象
  • 批准号:
    2322919
  • 财政年份:
    2024
  • 资助金额:
    $ 8.45万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了