Phase Transition: Questions in Percolation and Interacting Particle Systems

相变:渗透和相互作用粒子系统中的问题

基本信息

  • 批准号:
    9704197
  • 负责人:
  • 金额:
    $ 2.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-07-15 至 1999-06-30
  • 项目状态:
    已结题

项目摘要

9704197 Liggett Alan Stacey proposes to work on problems in percolation, interacting particle systems and probabilistic combinatorics. He proposes to work (partly with Tom Liggett) to try to extend work of theirs (and others) on contact processes on trees: to prove a conjecture of Liggett which would complete a significant characterization of the three phases of the process on a homogeneous tree; to understand more fully the behavior in the three phases; and to use this detailed knowledge of the behavior to complete work with Robin Pemantle in which certain exponentially growing non-homogeneous trees are found where the branching random walk and/or the contact process only have one phase transition. Alan Stacey also proposes to extend methods developed by van den Berg to show almost sure uniqueness of the Gibbs measure of a two-dimensional spin-glass model at parameter values where the Gibbs measure for the corresponding Ising model is not unique. He proposes to work on problems in percolation such as trying to prove that percolation occurs in certain models where this is not known for any non-trivial value of the parameters, including a percolation model with long-range dependencies which arises from a question about random walks on a graph; a more ambitious project (in the light of the unsuccessful attempts by many distinguished probabilists) is to show that the percolation probability at the critical value is zero for standard bond percolation in three dimensions. Stacey also proposes to work on an appealing conjecture that the rates of convergence are the same for two different Markov chains arising from a card-shuffling situation. The problems described concern mathematical models for important physical and biological processes such as the spread of disease and the growth of populations (both human, and those consisting of other organisms). Although the mathematical descriptions are abstract and are not typically based on one specific real-world situation, a detailed understandi ng of the abstract models helps one to understand and predict important physical model; indeed, one or two simply described mathematical models can be of relevance to a very large number of physical systems. One key phenomenon common to the abstract models and the empirical observations is phase transitions: a system can exhibit two or more quite different types of behavior (or phases) under different conditions; a classic example is that of a disease which may spread out of control under certain conditions and fizzle out under different circumstances. The change from one phase to another is often quite dramatic and can be the result of a very small change in the parameters on which the system depends, such as the susceptibility of the individuals in a population or (in another classic example of phase transition -- that of a substance turning from a solid to a liquid) the temperature. The work proposed explores the nature of the phase transition and the types of phases that can occur in a number of different models. They include the contact process -- a model for the spread of disease -- which can exhibit two phases in certain environments, and three phases in others; and spin glasses -- which model magnetism in a substance with impurities -- where, in a certain case, it is thought that no phase transition exists and the system has similar behavior at all temperatures; but this conjecture is not yet proven.
小行星9704197 Alan Stacey建议研究渗流,相互作用粒子系统和概率组合学中的问题。 他提议去工作(部分与汤姆利格特)试图延长他们的工作,(及其他)关于树上的接触过程:证明Liggett的一个猜想,该猜想将完成齐次树上接触过程的三个阶段的一个重要特征;更全面地理解这三个阶段的行为;并使用这种行为的详细知识来完成Robin Pemantle的工作,其中发现了某些指数增长的非齐次树,其中分支随机行走和/或或者接触过程只有一个相变。 艾伦·斯泰西还建议扩展货车登贝格开发的方法,以显示几乎肯定的唯一性的吉布斯措施的二维自旋玻璃模型的参数值,其中吉布斯措施相应的伊辛模型是不唯一的。 他建议工作的问题,在渗流,如试图证明,渗流发生在某些模型,这是不知道任何非平凡值的参数,包括一个渗流模型与长程依赖关系所产生的一个问题,关于随机游走图;一个更雄心勃勃的项目(鉴于许多杰出的probabilists不成功的尝试)是为了证明在临界值处的渗流概率对于三维的标准键渗流是零。 斯泰西还提出了一个有吸引力的猜想,即对于洗牌情况下产生的两个不同的马尔可夫链,收敛速度是相同的。 所描述的问题涉及重要的物理和生物过程的数学模型,例如疾病的传播和人口(包括人类和其他生物体)的增长。 虽然数学描述是抽象的,并且通常不是基于一个特定的现实世界的情况,但对抽象模型的详细理解有助于理解和预测重要的物理模型;实际上,一个或两个简单描述的数学模型可以与大量的物理系统相关。 抽象模型和经验观察所共有的一个关键现象是相变:一个系统在不同的条件下可以表现出两种或更多种完全不同的行为(或阶段);一个经典的例子是疾病可能在某些条件下失控,在不同的情况下失败。 从一个阶段到另一个阶段的变化往往是相当戏剧性的,并且可以是系统所依赖的参数的非常小的变化的结果,例如群体中个体的易感性或(在相变的另一个经典例子中-物质从固体变成液体)温度。提出的工作探讨了相变的性质和类型的阶段,可以发生在一些不同的模型。 它们包括接触过程-疾病传播的模型-在某些环境中可以表现出两个阶段,在其他环境中可以表现出三个阶段;和自旋玻璃-在含有杂质的物质中模拟磁性-在某种情况下,人们认为不存在相变,系统在所有温度下都有类似的行为;但这一猜想尚未得到证实。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Thomas Liggett其他文献

Equivalence of renewal sequences and isomorphism of random walks
  • DOI:
    10.1007/bf02772983
  • 发表时间:
    1994-02-01
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Jon Aaronson;Thomas Liggett;Pierre Picco
  • 通讯作者:
    Pierre Picco

Thomas Liggett的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Thomas Liggett', 18)}}的其他基金

Limit theorems for random walk in random environment
随机环境中随机游走的极限定理
  • 批准号:
    0707226
  • 财政年份:
    2007
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Continuing Grant
Interacting Particle Systems
相互作用的粒子系统
  • 批准号:
    0301795
  • 财政年份:
    2003
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Continuing Grant
Interacting Particle Systems
相互作用的粒子系统
  • 批准号:
    0070465
  • 财政年份:
    2000
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Continuing Grant
Interacting Particle Systems
相互作用的粒子系统
  • 批准号:
    9703830
  • 财政年份:
    1997
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Interacting Particle Systems and Brownian Motion
数学科学:相互作用粒子系统和布朗运动的研究
  • 批准号:
    9400644
  • 财政年份:
    1994
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Interacting Particle Systems
数学科学:相互作用粒子系统的研究
  • 批准号:
    9100725
  • 财政年份:
    1991
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Studies in Brownian Motion and Interacting Particle Systems
数学科学:布朗运动和相互作用粒子系统的研究
  • 批准号:
    8902152
  • 财政年份:
    1989
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Random Fields
数学科学:随机场
  • 批准号:
    8702558
  • 财政年份:
    1987
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Interacting Particle Systems and Random Fields
数学科学:相互作用的粒子系统和随机场
  • 批准号:
    8601800
  • 财政年份:
    1986
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Infinite Particle Systems
数学科学:无限粒子系统
  • 批准号:
    8300836
  • 财政年份:
    1983
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Continuing Grant

相似国自然基金

Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark Supercooled Phase Transition
  • 批准号:
    24ZR1429700
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
以果蝇为模式研究纤毛过渡纤维(Transition fibers)的形成和功能
  • 批准号:
    31871357
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Social sustainable diets: Supporting the transition to plant-based foods through close relationships
社会可持续饮食:通过密切关系支持向植物性食品的过渡
  • 批准号:
    ES/Y01040X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Fellowship
TARGET Mineral Resources - Training And Research Group for Energy Transition Mineral Resources
TARGET 矿产资源 - 能源转型矿产资源培训与研究小组
  • 批准号:
    NE/Y005457/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Training Grant
NSF Engines: Louisiana Energy Transition Engine
NSF 发动机:路易斯安那州能源转型发动机
  • 批准号:
    2315727
  • 财政年份:
    2024
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Cooperative Agreement
Characterizing Transition to Turbulence in Pulsatile Pipe Flow
表征脉动管流中的湍流转变
  • 批准号:
    2335760
  • 财政年份:
    2024
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Standard Grant
Transition Metal - Main Group Multiple Bonding
过渡金属 - 主族多重键合
  • 批准号:
    2349123
  • 财政年份:
    2024
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Standard Grant
Doctoral Dissertation Research: Renewable Energy Transition and Economic Growth
博士论文研究:可再生能源转型与经济增长
  • 批准号:
    2342813
  • 财政年份:
    2024
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Standard Grant
CAREER: Overcoming the trade-off between thermopower and conductivity in transition metal oxides
职业生涯:克服过渡金属氧化物热电势和电导率之间的权衡
  • 批准号:
    2340234
  • 财政年份:
    2024
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Continuing Grant
Alabama Agricultural and Mechanical University ALSAMP Bridge to the Doctorate: Navigating BD Scholars’ Successful Transition to STEM Graduate Programs
阿拉巴马农业机械大学 ALSAMP 通往博士学位的桥梁:引导 BD 学者成功过渡到 STEM 研究生项目
  • 批准号:
    2404955
  • 财政年份:
    2024
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Standard Grant
NSF Engines Development Award: Accelerating A Just Energy Transition Through Innovative Nature-Inclusive Offshore Wind Farms (CT,DE,MA,MD,NJ,RI,VA)
NSF 发动机开发奖:通过创新的自然包容性海上风电场加速公正的能源转型(康涅狄格州、特拉华州、马里兰州、马里兰州、新泽西州、罗德岛州、弗吉尼亚州)
  • 批准号:
    2315558
  • 财政年份:
    2024
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Cooperative Agreement
Atypical Chemokine Receptors orchestrate changes in vascular patterning during fibrotic liver disease via Endothelial-to-Mesenchymal Transition.
非典型趋化因子受体通过内皮-间质转化协调纤维化肝病期间血管模式的变化。
  • 批准号:
    MR/Y013751/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.03万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了