Chaos and Stability in Quantum Mechanics

量子力学中的混沌与稳定性

基本信息

  • 批准号:
    9706256
  • 负责人:
  • 金额:
    $ 7.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-08-01 至 2001-07-31
  • 项目状态:
    已结题

项目摘要

9706256 Howland Howland will study (1.) stability and chaos in discrete quantum systems driven by time-dependent perturbations; (2.) the asymptotics of resonance widths in multiscale perturbation problems; and (3.) the occurrence of twisted bundles in the Born-Oppenheimer approximation for molecular Hamiltonians. Chaos Theory, one of the most important new fields of mathematics to arise in the last few decades, is concerned with systems which can exhibit a very erratic motion. The most common example is the turbulent flow of water from a pipe when a faucet is turned on hard. A famous early example concerned computer models of the weather, where the occurrence of chaotic behavior makes it impossible to predict the weather more than a few days in advance. Perhaps the most important discovery has been simply the realization that, far from being rare, chaotic behavior is not only very common, but in some sense, is actually the most common type of behavior. The systems usually studied in Chaos Theory are described by Classical Mechanics, the theory initiated by Isaac Newton which describes ordinary objects like those we experience. Microscopic systems like atoms, molecules, and electrons are not at all like the objects of ordinary experience, and are described by a strange theory known as Quantum Mechanics, which was developed in the first quarter of this century. The main thrust of the present project is to study Chaos Theory in the context of atomic and molecular systems. This is quite difficult because, since Classical Mechanics and Quantum Mechanics are so very different, there is no agreement on exactly what it is that one wants to study. This is still a field where most experts feel that some sort of new ideas and approaches will be needed before the problem is understood. An example of the type of system that is of interest is a Hydrogen atom in a laser field. As simple as this seems physically, it is quite a difficult mathematical problem. In the present project, simple models of such a system will be studied in order to try to come to some understanding of how they work.
9706256 豪兰 豪兰将研究(1.) 含时微扰驱动的离散量子系统的稳定性和混沌;(2.)多尺度扰动问题中共振宽度的渐近性;(3.)在玻恩-奥本海默近似下的分子哈密顿中出现扭曲束。 混沌理论是近几十年来出现的最重要的数学新领域之一,它研究的是可以表现出非常不规则运动的系统。最常见的例子是当水龙头用力打开时,水从管道中湍流出来。一个著名的早期例子涉及天气的计算机模型,其中混沌行为的发生使得不可能提前几天预测天气。也许最重要的发现是简单地认识到,混沌行为远非罕见,它不仅非常常见,而且在某种意义上,实际上是最常见的行为类型。通常在混沌理论中研究的系统由经典力学描述,该理论由艾萨克·牛顿发起,描述了我们所经历的普通物体。 像原子、分子和电子这样的微观系统与普通经验中的对象完全不同,它们由一种被称为量子力学的奇怪理论来描述,这种理论是在本世纪的前25年发展起来的。本项目的主旨是在原子和分子系统的背景下研究混沌理论。这是相当困难的,因为经典力学和量子力学是如此的不同,对于人们想要研究的到底是什么没有一致的意见。这仍然是一个领域,大多数专家认为,在理解这个问题之前,需要一些新的想法和方法。感兴趣的系统类型的一个例子是激光场中的氢原子。尽管这在物理上看起来很简单,但它是一个相当困难的数学问题。在本项目中,将研究这种系统的简单模型,以试图了解它们是如何工作的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

James Howland其他文献

James Howland的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('James Howland', 18)}}的其他基金

Mathematical Sciences: Stable and Chaotic Quantum Motion
数学科学:稳定和混沌量子运动
  • 批准号:
    9304270
  • 财政年份:
    1993
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Random Quantum Systems
数学科学:随机量子系统
  • 批准号:
    9002357
  • 财政年份:
    1990
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Random Quantum Systems
数学科学:随机量子系统
  • 批准号:
    8801548
  • 财政年份:
    1988
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Operators and Random Systems
数学科学:算子和随机系统
  • 批准号:
    8601541
  • 财政年份:
    1986
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Quantum Mechanics and Random Fields
数学科学:量子力学和随机场
  • 批准号:
    8202115
  • 财政年份:
    1982
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Continuing Grant
Quantum Mechanical Scattering and Gaussian Fields
量子机械散射和高斯场
  • 批准号:
    7902490
  • 财政年份:
    1979
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Continuing Grant
Quantum Mechanical Scattering and Gaussian Fields
量子机械散射和高斯场
  • 批准号:
    7407313
  • 财政年份:
    1974
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Standard Grant

相似国自然基金

随机激励下多稳态系统的临界过渡识别及Basin Stability分析
  • 批准号:
    11872305
  • 批准年份:
    2018
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
  • 批准号:
    2312706
  • 财政年份:
    2024
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Standard Grant
The Mechanism and Stability of Global Imbalances
全球失衡的机制与稳定性
  • 批准号:
    23K22120
  • 财政年份:
    2024
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234522
  • 财政年份:
    2024
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234523
  • 财政年份:
    2024
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Standard Grant
Collaborative Research: Sediment and Stability: Quantifying the Effect of Moraine Building on Greenland Tidewater Glaciers
合作研究:沉积物和稳定性:量化冰碛建筑对格陵兰潮水冰川的影响
  • 批准号:
    2234524
  • 财政年份:
    2024
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Standard Grant
Trait-shift induced interaction modification: How individual variation affects ecosystem stability
性状转变引起的相互作用修改:个体变异如何影响生态系统稳定性
  • 批准号:
    2330970
  • 财政年份:
    2024
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Standard Grant
CAREER: Interpolation, stability, and rationality
职业:插值、稳定、合理
  • 批准号:
    2338345
  • 财政年份:
    2024
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Continuing Grant
Investigating the stability of the inverse Brascamp-Lieb inequality
研究反 Brascamp-Lieb 不等式的稳定性
  • 批准号:
    23K25777
  • 财政年份:
    2024
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Understanding the mechanisms of microbial community assembly, stability and function
了解微生物群落组装、稳定性和功能的机制
  • 批准号:
    NE/Y001249/1
  • 财政年份:
    2024
  • 资助金额:
    $ 7.23万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了