Numerical Investigations of the Incompressible Euler Equations, the Vlasov-Poisson/Fokker-Planck Equations, and the Boltzmann Equation

不可压缩欧拉方程、Vlasov-Poisson/Fokker-Planck 方程和 Boltzmann 方程的数值研究

基本信息

项目摘要

Abstract: I propose to numerically address the question of finite time singularity development in the three-dimensional incompressible Euler equations with smooth initial data. These equations model the flow of incompressible ideal fluids. In particular, I will consider the axisymmetric with swirl case which allows for higher resolution than possible in fully three-dimensional experiments. Several different finite difference techniques will be implemented. I will investigate the performance of the different numerical schemes in order to assess the quality of each method. Also, I will study the effects different numerical boundary conditions have on vorticity amplification as well as the fully three-dimensional problem using particle methods. In conjunction with these experiments, I will perform numerical simulations of the Vlasov-Poisson equations in one dimension. These equations model a collisionless plasma of electrons in a uniform background of ions, and serve as a simpler analogue of the two-dimensional incompressible Euler equations. I will numerically study the behavior of weak solutions to the Vlasov-Poisson and Fokker-Planck-Poisson equations arising from non-smooth electron sheet initial data. An electron sheet describes a concentrated beam of electrons. The equations will be regularized by either smoothing the initial condition or by including collisions modeled by the Fokker-Planck-Poisson equations. I propose to use both a a finite difference method developed by Jack Schaeffer as well as particle methods to examine the solution of the Vlasov-Poisson equations obtained in the limit of vanishing regularization. And finally, this proposed research will prepare me to afterward conduct research related to the Boltzmann and Fokker-Planck equations with non-qmooth initial data which has potential medical appliations. These equations are used in the computation of dosage calculations in radiation therapy.
摘要: 我建议数值解决问题的有限时间奇异性发展的三维不可压缩欧拉方程与光滑的初始数据。 这些方程模拟了不可压缩理想流体的流动。 特别是,我将考虑轴对称与涡流的情况下,允许更高的分辨率比可能在全三维实验。 将采用几种不同的有限差分技术。 我将研究不同数值方案的性能,以评估每种方法的质量。 此外,我将研究不同的数值边界条件对涡量放大的影响,以及使用粒子方法的全三维问题。 结合这些实验,我将进行一维的Vlasov-Poisson方程的数值模拟。 这些方程模拟了在均匀离子背景中的无碰撞电子等离子体,并作为二维不可压缩欧拉方程的一个简单的模拟。 我将数值研究由非光滑电子片初始数据产生的Vlasov-Poisson和Fokker-Planck-Poisson方程的弱解的行为。 电子片描述了一束集中的电子。 方程将通过平滑初始条件或通过包括由Fokker-Planck-Poisson方程建模的碰撞来正则化。 我建议使用一个有限差分方法开发的杰克谢弗以及粒子的方法来检查的Vlasov-Poisson方程的解决方案中得到的限制消失正则化。 最后,这项研究将为我以后进行与非qmooth初始数据的Boltzmann和Fokker-Planck方程相关的研究做好准备,这些方程具有潜在的医学应用。 这些方程用于计算放射治疗中的剂量计算。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lori Ann Carmack其他文献

Lori Ann Carmack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lori Ann Carmack', 18)}}的其他基金

Numerical Investigations of the Incompressible Euler Equations, the Vlasov-Poisson/Fokker-Planck Equations, and the Boltzmann Equation
不可压缩欧拉方程、Vlasov-Poisson/Fokker-Planck 方程和 Boltzmann 方程的数值研究
  • 批准号:
    9896242
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Standard Grant

相似海外基金

NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    NE/Z000254/1
  • 财政年份:
    2025
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAREER: Observational and Modeling Investigations of Pulsating Aurora Electrodynamics
职业:脉动极光电动力学的观测和建模研究
  • 批准号:
    2339961
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAS: Designing Copper-based Multi-metallic Single-atom Alloys for Cross Coupling Reactions through Combined Surface Science and Catalytic Investigations
CAS:通过结合表面科学和催化研究设计用于交叉偶联反应的铜基多金属单原子合金
  • 批准号:
    2400227
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334541
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
SBIR Phase II: Development of a Novel Measurement Technology to Enable Longitudinal Multiomic Investigations of the Gut Microbiome
SBIR 第二阶段:开发新型测量技术以实现肠道微生物组的纵向多组学研究
  • 批准号:
    2314685
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Cooperative Agreement
ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
  • 批准号:
    MR/Y503472/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
CAS: Cu, Fe, and Ni Pincer Complexes: A Platform for Fundamental Mechanistic Investigations and Reaction Discovery
CAS:Cu、Fe 和 Ni 钳配合物:基础机理研究和反应发现的平台
  • 批准号:
    2349827
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Natural Traces: Natural Traces in forensic investigations - how the analysis of non-human evidence can solve crime
自然痕迹:法医调查中的自然痕迹 - 非人类证据分析如何解决犯罪
  • 批准号:
    EP/Y036743/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Investigations into aryl nitriles for protein modification via an untapped mode of reactivity
通过未开发的反应模式研究芳基腈用于蛋白质修饰
  • 批准号:
    EP/X037819/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Collaborative Research: NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
合作研究:NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
  • 批准号:
    2334542
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了