Automatic Speech Recognition Based on Syllable-length Acoustic Models
基于音节长度声学模型的自动语音识别
基本信息
- 批准号:9712579
- 负责人:
- 金额:$ 78.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-09-15 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Units with a longer time basis than the traditional phones or sub- phones may provide a better structural basis for ASR systems customized for recognition of naturally spoken discourse. In this project, syllabic-length acoustic models are being explored for the recognition of conversational speech. The project entails: definition of the acoustic features derived from energy trajectories spanning ca. 250-ms intervals of speech; statistical modeling of these syllable-length regions; development of a decoding scheme designed to combine the outputs of these acoustic models with the more traditional phone- and sub-phone-length models; and embedding the syllable, phone and sub-phone features into a multi-tiered representation of language designed for robust recognition under a wide range of acoustic-environmental and speaking conditions. A complete ASR system is being developed that will incorporate the results of this research, and will be evaluated on fluent speech. Successful results with the recognition system have the potential to improve practical ASR systems that must deal with the decoding of spontaneous discourse. Additionally, the analysis of longer-time structure at the acoustic, statistical, and lexical levels should improve our basic knowledge about the structure of conversation speech.
具有比传统电话或子电话更长的时间基础的单元可以为为识别自然发声的话语而定制的ASR系统提供更好的结构基础。在这个项目中,正在探索用于识别会话语音的音节长度的声学模型。该项目需要:确定从大约250毫秒语音间隔的能量轨迹中得出的声学特征;对这些音节长度区域进行统计建模;制定一种解码方案,以便将这些声学模型的输出与更传统的音长和子音长模型结合起来;将音节、音素和子音节特征嵌入语言的多层表示中,以便在广泛的声学环境和说话条件下进行稳健的识别。一个完整的ASR系统正在开发中,它将纳入这项研究的结果,并将在流利的演讲中进行评估。识别系统的成功结果有可能改进实际的ASR系统,这些系统必须处理自发话语的解码。此外,在声学、统计和词汇层面对较长时间结构的分析将提高我们对会话言语结构的基本知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nelson Morgan其他文献
Updated MINDS report on speech recognition and understanding, Part 2 [DSP Education]
关于语音识别和理解的最新 MINDS 报告,第 2 部分 [DSP 教育]
- DOI:
10.1109/msp.2009.932707 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
J. Baker;Li Deng;S. Khudanpur;Chin;James R. Glass;Nelson Morgan;Douglas D. O'Shaughnessy - 通讯作者:
Douglas D. O'Shaughnessy
Updated MINDS Report on Speech Recognition and Understanding
更新后的 MINDS 关于语音识别和理解的报告
- DOI:
10.1016/s1567-4231(09)70205-9 - 发表时间:
2009 - 期刊:
- 影响因子:14.9
- 作者:
J. Baker;Li Deng;S. Khudanpur;Chin;James R. Glass;Nelson Morgan - 通讯作者:
Nelson Morgan
Writing programs that scale with increasing numbers of cores should be as easy as writing programs for sequential computers
编写随着内核数量的增加而扩展的程序应该像为顺序计算机编写程序一样简单
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
K. Asanović;Rastislav Bodík;James Demmel;T. Keaveny;K. Keutzer;J. Kubiatowicz;Nelson Morgan;David A. Patterson;Koushik Sen;J. Wawrzynek;David Wessel;K. Yelick - 通讯作者:
K. Yelick
Nelson Morgan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nelson Morgan', 18)}}的其他基金
RI: Small: Collaborative Research: Towards Modeling Source Separation from Measured Cortical Responses
RI:小型:协作研究:根据测量的皮质反应对源分离进行建模
- 批准号:
1320260 - 财政年份:2013
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant
EAGER: Collaborative Research: Towards Modeling Human Speech Confusions in Noise
EAGER:协作研究:对噪声中的人类语音混乱进行建模
- 批准号:
1248047 - 财政年份:2012
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant
International: An Analysis of Speaker Diarization Systems Errors
国际:说话人二值化系统误差分析
- 批准号:
1135365 - 财政年份:2011
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant
CI-P: Towards a Consensus Representation for Understanding Structure of Multiparty Conversations
CI-P:走向理解多方对话结构的共识表示
- 批准号:
0958561 - 财政年份:2010
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant
OIA/MRI: Acquisition of a Computational Server for Large Vocabulary Connectionist Speech Recognition
OIA/MRI:购买用于大词汇量联结语音识别的计算服务器
- 批准号:
0521210 - 财政年份:2005
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant
ITR/PE+SY:Mapping Meetings: Language Technology to make Sense of Human Interaction
ITR/PE SY:映射会议:理解人类互动的语言技术
- 批准号:
0121396 - 财政年份:2001
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant
SGER: Incorporating Higher-Level Information into Dynamic Pronounciation Modeling for ASR
SGER:将高级信息纳入 ASR 动态发音建模
- 批准号:
9713346 - 财政年份:1997
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant
Robust Speech Recognition Using Vector Computing
使用矢量计算的鲁棒语音识别
- 批准号:
9612778 - 财政年份:1997
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant
A System for Connectionist Speech Recognition Research
联结主义语音识别研究系统
- 批准号:
9311980 - 财政年份:1993
- 资助金额:
$ 78.45万 - 项目类别:
Continuing Grant
Application of Signal Processing CAD to the Digital Realization of Artificial Neural Networks
信号处理CAD在人工神经网络数字化实现中的应用
- 批准号:
8922354 - 财政年份:1990
- 资助金额:
$ 78.45万 - 项目类别:
Continuing Grant
相似海外基金
Disrupter or enabler? Assessing the impact of using automatic speech recognition technology in interpreter-mediated legal proceedings
颠覆者还是推动者?
- 批准号:
2889440 - 财政年份:2023
- 资助金额:
$ 78.45万 - 项目类别:
Studentship
Industrial research into the reduction of biases in foundational Automatic Speech Recognition models.
减少基础自动语音识别模型中偏差的工业研究。
- 批准号:
10068091 - 财政年份:2023
- 资助金额:
$ 78.45万 - 项目类别:
Collaborative R&D
Automatic Speech Recognition (ASR) engine to improve autistic children speech
自动语音识别(ASR)引擎可改善自闭症儿童的言语能力
- 批准号:
10056712 - 财政年份:2023
- 资助金额:
$ 78.45万 - 项目类别:
Grant for R&D
A State-of-the-Art Automatic Speech Recognition and Conversational Platform to Enable Socially Assistive Robots for Persons with Alzheimer's Disease and Related Dementias
最先进的自动语音识别和对话平台,为阿尔茨海默病和相关痴呆症患者提供社交辅助机器人
- 批准号:
10699887 - 财政年份:2023
- 资助金额:
$ 78.45万 - 项目类别:
More efficient and accurate automatic speech recognition
自动语音识别更高效、准确
- 批准号:
RGPIN-2018-05226 - 财政年份:2022
- 资助金额:
$ 78.45万 - 项目类别:
Discovery Grants Program - Individual
FAI: A New Paradigm for the Evaluation and Training of Inclusive Automatic Speech Recognition
FAI:包容性自动语音识别评估和训练的新范式
- 批准号:
2147350 - 财政年份:2022
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant
More efficient and accurate automatic speech recognition
自动语音识别更高效、准确
- 批准号:
RGPIN-2018-05226 - 财政年份:2021
- 资助金额:
$ 78.45万 - 项目类别:
Discovery Grants Program - Individual
Automatic Speech Recognition for Inmate Speech
囚犯语音自动语音识别
- 批准号:
558315-2021 - 财政年份:2021
- 资助金额:
$ 78.45万 - 项目类别:
Postgraduate Scholarships - Doctoral
Collaborative Research: Improving Techniques of Automatic Speech Recognition and Transfer Learning using Documentary Linguistic Corpora
合作研究:利用文献语言语料库改进自动语音识别和迁移学习技术
- 批准号:
2123624 - 财政年份:2021
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant
Collaborative Research: Improving Techniques of Automatic Speech Recognition and Transfer Learning using Documentary Linguistic Corpora
合作研究:利用文献语言语料库改进自动语音识别和迁移学习技术
- 批准号:
2123578 - 财政年份:2021
- 资助金额:
$ 78.45万 - 项目类别:
Standard Grant














{{item.name}}会员




