Learning and Intelligent Systems: Adaptive Cortical Computation in the Visual Domain: Integrated Approach UsingMulti-Unit Recording, Network Theory, & Experiments in O
学习和智能系统:视觉领域的自适应皮层计算:使用多单元记录、网络理论的综合方法,
基本信息
- 批准号:9720320
- 负责人:
- 金额:$ 72.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1997
- 资助国家:美国
- 起止时间:1997-10-01 至 2001-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IBN-9720320 PI: ANDERSON This project is being funded through the Learning & Intelligent Systems Initiative. This study investigates functional interactions among groups of neurons (nerve cells) in the brain. The cerebral cortex of the brain is a dynamic ensemble of groups of neurons with activities that coalesce and dissolve in the performance of particular tasks. A computational model called 'network of networks' describes the operation of computations based on neurons interacting in intermediate groupings, in the size range between single neurons (only one computing element) and entire brain regions (to hundreds of millions of computing elements). In the intermediate scale groupings, the model makes predictions about the behavior of both its component single neurons and the overall nature of the cortical computation, manifested as behavior and perception. Experimental tests utilize the mammalian visual system because so much is known about cortical processing of visual information at the level of single neurons, and also there is a large body of related experimental results for visual perception. There are three inter-related parts to this project. 1) Computer simulations and mathematical analysis further develop the 'network of networks' model itself. 2) Simultaneous activity of multiple neurons in visual areas are recorded physiologically to examine long-range transfer of information across visual cortex, of the type suggested by the model. 3) Analyses of previously obtained psychophysical behavioral data from human subjects are combined with computer simulations to try to understand the surprising effectiveness of silhouettes in object recognition, and to provide a test system for the network model. Results will have an impact because of the importance of linking cognition with neuroscience to understand mechanisms that underlie learning and perception, and because understanding how the brain handles complex computations will provide insights for the design of artificia l recognition and decision-making systems.
这个项目是由学习和智能系统倡议资助的。这项研究调查了大脑中神经元群(神经细胞)之间的功能相互作用。大脑的大脑皮层是神经元群的动态集合,它们的活动在特定任务的执行中结合和溶解。一种称为“网络的网络”的计算模型描述了基于神经元在中间分组中相互作用的计算操作,其大小范围从单个神经元(只有一个计算元素)到整个大脑区域(到数亿个计算元素)。在中等规模分组中,该模型对其组成的单个神经元的行为和皮层计算的整体性质(表现为行为和感知)进行预测。实验测试利用哺乳动物的视觉系统,因为我们对单个神经元水平的视觉信息皮质处理已经了解得很多,而且在视觉感知方面也有大量相关的实验结果。这个项目有三个相互关联的部分。1)计算机模拟和数学分析进一步发展了“网络的网络”模型本身。2)从生理学上记录视觉区域多个神经元的同时活动,以检查模型所建议的视觉皮层之间的远程信息传递。3)通过对先前获得的人类受试者心理物理行为数据的分析,结合计算机模拟,试图了解轮廓在物体识别中的惊人有效性,并为网络模型提供测试系统。结果将产生影响,因为将认知与神经科学联系起来对于理解学习和感知的机制非常重要,因为理解大脑如何处理复杂的计算将为人工识别和决策系统的设计提供见解。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Anderson其他文献
Talking nets: An oral history of neural networks
会说话的网络:神经网络的口述历史
- DOI:
10.1016/s0160-9327(00)80031-9 - 发表时间:
1999 - 期刊:
- 影响因子:0.6
- 作者:
B. Widrow;Carver Mead;Stephen Grossberg;Michael Arbib;James Anderson;David Rumelhart;Geoff Hinton - 通讯作者:
Geoff Hinton
Reform of statistical inference in psychology: The case ofMemory & Cognition
心理学统计推断的改革:以记忆为例
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
S. Finch;G. Cumming;Jennifer Williams;L. Palmer;Elvira Griffith;C. Alders;James Anderson;Olivia Goodman - 通讯作者:
Olivia Goodman
Phytoestrogens: Diabetic Nephropathy
植物雌激素:糖尿病肾病
- DOI:
- 发表时间:
2002 - 期刊:
- 影响因子:0
- 作者:
T. Stephenson;James Anderson - 通讯作者:
James Anderson
Delineating Parameter Unidentifiabilities in Complex Models
描述复杂模型中的参数不可辨识性
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
D. Raman;James Anderson;A. Papachristodoulou - 通讯作者:
A. Papachristodoulou
Structured state space realizations for SLS distributed controllers
SLS分布式控制器的结构化状态空间实现
- DOI:
10.1109/allerton.2017.8262844 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
James Anderson;N. Matni - 通讯作者:
N. Matni
James Anderson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Anderson', 18)}}的其他基金
CPS: Medium: GOALI: Enabling Safe Innovation for Autonomy: Making Publish/Subscribe Really Real-Time
CPS:中:GOALI:实现自主安全创新:使发布/订阅真正实时
- 批准号:
2333120 - 财政年份:2024
- 资助金额:
$ 72.29万 - 项目类别:
Standard Grant
Collaborative Research: Bridging the scale gap between local and regional methane and carbon dioxide isotopic fluxes in the Arctic
合作研究:缩小北极当地和区域甲烷和二氧化碳同位素通量之间的规模差距
- 批准号:
2427291 - 财政年份:2024
- 资助金额:
$ 72.29万 - 项目类别:
Continuing Grant
Collaborative Research: Scalable & Communication Efficient Learning-Based Distributed Control
合作研究:可扩展
- 批准号:
2231350 - 财政年份:2022
- 资助金额:
$ 72.29万 - 项目类别:
Standard Grant
CNS Core: Small: Budgets, Budgets Everywhere: A Necessity for Safe Real-Time on Multicore
CNS 核心:小:预算,预算无处不在:多核安全实时的必要性
- 批准号:
2151829 - 财政年份:2022
- 资助金额:
$ 72.29万 - 项目类别:
Standard Grant
CAREER: Towards Scale-Invariant Identification and Synthesis Algorithms for Control Using Randomization
职业:使用随机化进行控制的尺度不变识别和合成算法
- 批准号:
2144634 - 财政年份:2022
- 资助金额:
$ 72.29万 - 项目类别:
Continuing Grant
CPS: Medium: GOALI: Enabling Scalable Real-Time Certification for AI-Oriented Safety-Critical Systems
CPS:中:GOALI:为面向 AI 的安全关键系统提供可扩展的实时认证
- 批准号:
2038855 - 财政年份:2021
- 资助金额:
$ 72.29万 - 项目类别:
Standard Grant
Collaborative Research: Bridging the scale gap between local and regional methane and carbon dioxide isotopic fluxes in the Arctic
合作研究:缩小北极当地和区域甲烷和二氧化碳同位素通量之间的规模差距
- 批准号:
1855928 - 财政年份:2021
- 资助金额:
$ 72.29万 - 项目类别:
Continuing Grant
Collaborative Research: Bridging the scale gap between local and regional methane and carbon dioxide isotopic fluxes in the Arctic
合作研究:缩小北极当地和区域甲烷和二氧化碳同位素通量之间的规模差距
- 批准号:
1848620 - 财政年份:2021
- 资助金额:
$ 72.29万 - 项目类别:
Continuing Grant
CPS: Medium: GOALI: Real-Time Computer Vision in Autonomous Vehicles: Real Fast Isn't Good Enough
CPS:中:GOALI:自动驾驶汽车中的实时计算机视觉:真正的快还不够好
- 批准号:
1837337 - 财政年份:2019
- 资助金额:
$ 72.29万 - 项目类别:
Standard Grant
CSR: Small: Software Transactional Memory for Real-Time Systems
CSR:小型:实时系统的软件事务内存
- 批准号:
1717589 - 财政年份:2017
- 资助金额:
$ 72.29万 - 项目类别:
Standard Grant
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
相似海外基金
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 72.29万 - 项目类别:
Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 72.29万 - 项目类别:
Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2313191 - 财政年份:2023
- 资助金额:
$ 72.29万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2313192 - 财政年份:2023
- 资助金额:
$ 72.29万 - 项目类别:
Standard Grant
A study on probabilistic models for novel intelligent systems that cope with uncertainty of learning models
应对学习模型不确定性的新型智能系统的概率模型研究
- 批准号:
23K03773 - 财政年份:2023
- 资助金额:
$ 72.29万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A Multiple-Input-Multiple-Architectural (MIMA) Approach to Improving Learning and Decision Making in Robust Artificial Intelligent Systems (RAIS)
用于改进鲁棒人工智能系统 (RAIS) 中的学习和决策的多输入多架构 (MIMA) 方法
- 批准号:
DDG-2020-00034 - 财政年份:2022
- 资助金额:
$ 72.29万 - 项目类别:
Discovery Development Grant
NSF-BSF: Utilizing Neurophysiological Measures to Better Understand and Improve Engagement and Learning with Intelligent Tutoring Systems
NSF-BSF:利用神经生理学措施通过智能辅导系统更好地理解和改善参与和学习
- 批准号:
2141139 - 财政年份:2022
- 资助金额:
$ 72.29万 - 项目类别:
Continuing Grant
Intelligent Group Decision Systems and Preference Learning
智能群体决策系统和偏好学习
- 批准号:
RGPIN-2018-05903 - 财政年份:2022
- 资助金额:
$ 72.29万 - 项目类别:
Discovery Grants Program - Individual
Using machine learning for model-free intelligent control of complex systems with constraints.
使用机器学习对有约束的复杂系统进行无模型智能控制。
- 批准号:
559783-2021 - 财政年份:2022
- 资助金额:
$ 72.29万 - 项目类别:
Postgraduate Scholarships - Doctoral
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
- 批准号:
RGPIN-2019-05223 - 财政年份:2022
- 资助金额:
$ 72.29万 - 项目类别:
Discovery Grants Program - Individual