Learning and Intelligent Systems: Neurophysiological, Computational, and Educational Studies of Sequence Learning and Cognitive Planning

学习和智能系统:序列学习和认知规划的神经生理学、计算和教育研究

基本信息

  • 批准号:
    9720333
  • 负责人:
  • 金额:
    $ 62.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-09-15 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

This project is being funded through the Learning and Intelligent Systems (LIS) Initiative. The project aims to advance understanding of how the brain generates intelligent behavior by examining the capacity to think about sequences of events. Whether cooking an elaborate meal or merely dialing a phone number, multiple events in a specific temporal order must be kept in mind, in a form of working memory that helps in planning complex thoughts and actions. This problem will be studied in the project through an interdisciplinary approach. To directly probe brain mechanisms, neurophysiological experiments will be performed on awake behaving animals. Computer-based experiments with young children will be used to discover how children learn sequential behaviors and to test how to optimize such learning. Behavioral studies will be done on how human infants learn sequences. Cognitive and neural modeling will be used to discover brain designs and mechanisms to link the animal neurophysiological data to the human cognitive data. This interdisciplinary approach promises to produce insights that are beyond the scope of any single approach. Conducting experiments in two different animal species (monkeys and rats), in human infants, and in young children will permit identification of intelligent mechanisms that are preserved across different species. The animal studies will analyse the activity of large groups of single neurons to study how multiple neurons interact to generate intelligent behaviors. Neural modeling will probe the laws that govern these behaviors, and will make predictions that link brain to behavior. Through these analyses of how we learn and remember sequences of events, a foundation will be built for studying the neural basis of high-level cognitive operations such as planning and reasoning; for developing better educational software; and for applying models towards the solution of outstanding technological problems that require algorithms which emulate human intelligence.
该项目由学习和智能系统倡议资助。该项目旨在通过检查思考事件序列的能力来促进对大脑如何产生智能行为的理解。无论是做一顿精致的饭菜还是仅仅拨打一个电话号码,都必须记住特定时间顺序的多个事件,这是一种有助于规划复杂思想和行动的工作记忆形式。该项目将通过跨学科方法研究这一问题。为了直接探索大脑机制,将对清醒行为的动物进行神经生理学实验。基于计算机的幼儿实验将被用来发现儿童如何学习顺序行为,并测试如何优化这种学习。行为研究将对人类婴儿如何学习序列进行研究。认知和神经建模将用于发现大脑设计和机制,将动物神经生理数据与人类认知数据联系起来。 这种跨学科的方法有望产生超出任何单一方法范围的见解。在两种不同的动物物种(猴子和大鼠)、人类婴儿和幼儿身上进行实验,将有助于识别不同物种之间保存的智能机制。动物研究将分析大量单个神经元的活动,以研究多个神经元如何相互作用以产生智能行为。神经建模将探索支配这些行为的规律,并将做出将大脑与行为联系起来的预测。通过这些对我们如何学习和记忆事件序列的分析,将为研究高级认知操作(如规划和推理)的神经基础奠定基础;开发更好的教育软件;并将模型应用于解决需要模拟人类智能的算法的突出技术问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Grossberg其他文献

Working memory networks for learning multiple groupings of temporally ordered events: applications to 3-D visual object recognition
用于学习多组时间顺序事件的工作记忆网络:在 3D 视觉对象识别中的应用
Talking nets: An oral history of neural networks
会说话的网络:神经网络的口述历史
  • DOI:
    10.1016/s0160-9327(00)80031-9
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    B. Widrow;Carver Mead;Stephen Grossberg;Michael Arbib;James Anderson;David Rumelhart;Geoff Hinton
  • 通讯作者:
    Geoff Hinton
Adaptive resonance theory (ART)
自适应共振理论(ART)
  • DOI:
  • 发表时间:
    1998
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Carpenter;Stephen Grossberg
  • 通讯作者:
    Stephen Grossberg
A bio-inspired kinematic controller for obstacle avoidance during reaching tasks with real robots
仿生运动控制器,用于在真实机器人执行任务时避障
A head-neck-eye system that learns fault-tolerant saccades to 3-D targets using a self-organizing neural model
头颈眼系统,使用自组织神经模型学习 3D 目标的容错扫视

Stephen Grossberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Grossberg', 18)}}的其他基金

The 17th International Conference on Cognitive and Neural Systems (ICCNS), - May-June, 2013 - Boston, MA
第 17 届认知和神经系统国际会议 (ICCNS),- 2013 年 5 月至 6 月 - 马萨诸塞州波士顿
  • 批准号:
    1259780
  • 财政年份:
    2013
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
The International Conferences on Cognitive and Neural Systems at Boston University
波士顿大学认知和神经系统国际会议
  • 批准号:
    9986151
  • 财政年份:
    1999
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Adaptive Sensory-Motor Planning by Humans and Machines
人类和机器的自适应感觉运动规划
  • 批准号:
    9024877
  • 财政年份:
    1991
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Adaptive sensory-Motor Planning By Humans and machines
人类和机器的自适应感觉运动规划
  • 批准号:
    8716960
  • 财政年份:
    1988
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Organization of Annual Meeting of International Neural Network Society
国际神经网络学会年会组织
  • 批准号:
    8801252
  • 财政年份:
    1988
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Adaptive Sensory-Motor Planning by Humans and Machines (Information Science)
人类和机器的自适应感觉运动规划(信息科学)
  • 批准号:
    8417756
  • 财政年份:
    1985
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing grant
Decision-Making and Information Processing in Real-Time Network Models
实时网络模型中的决策和信息处理
  • 批准号:
    8000257
  • 财政年份:
    1980
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Mathematical Models in Psychophysiology and Development
心理生理学和发展中的数学模型
  • 批准号:
    7702958
  • 财政年份:
    1977
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
  • 批准号:
    2338555
  • 财政年份:
    2024
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313191
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2313192
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Standard Grant
A study on probabilistic models for novel intelligent systems that cope with uncertainty of learning models
应对学习模型不确定性的新型智能系统的概率模型研究
  • 批准号:
    23K03773
  • 财政年份:
    2023
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
NSF-BSF: Utilizing Neurophysiological Measures to Better Understand and Improve Engagement and Learning with Intelligent Tutoring Systems
NSF-BSF:利用神经生理学措施通过智能辅导系统更好地理解和改善参与和学习
  • 批准号:
    2141139
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Continuing Grant
A Multiple-Input-Multiple-Architectural (MIMA) Approach to Improving Learning and Decision Making in Robust Artificial Intelligent Systems (RAIS)
用于改进鲁棒人工智能系统 (RAIS) 中的学习和决策的多输入多架构 (MIMA) 方法
  • 批准号:
    DDG-2020-00034
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Discovery Development Grant
Intelligent Group Decision Systems and Preference Learning
智能群体决策系统和偏好学习
  • 批准号:
    RGPIN-2018-05903
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Discovery Grants Program - Individual
Using machine learning for model-free intelligent control of complex systems with constraints.
使用机器学习对有约束的复杂系统进行无模型智能控制。
  • 批准号:
    559783-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Biologically Inspired Robotics: Intelligent Systems for Trustworthy Human-Robot Co-learning and Adaptation
仿生机器人:可信赖的人机协同学习和适应的智能系统
  • 批准号:
    RGPIN-2019-05223
  • 财政年份:
    2022
  • 资助金额:
    $ 62.5万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了