Conference at MSRI in Low Dimensional-Topology

MSRI 低维拓扑会议

基本信息

  • 批准号:
    9727594
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-01 至 1999-08-31
  • 项目状态:
    已结题

项目摘要

9727594Casson This award will provide partial reimbursement for travel andsubsistence of speakers and participants in a conference onlow-dimensional topology that took place at the Mathematical SciencesResearch Center, Berkeley, California, May 22-26, 1998. The purpose ofthe conference was to bring together researchers working in all strands oflow-dimensional topology and to enable them to gain an overall perspectiveon developments in the field. Recent years have seen exciting newdevelopments in the study of 3- and 4-dimensional manifolds and knottheory. Bringing researchers in these fields together encouraged across-fertilization of ideas and techniques, exposed graduate studentsto these ideas, and encouraged new collaborations. The conference tookplace one year after the end of a closely related year-long program atM.S.R.I. Thus it was natural to review how progress had beenconsolidated in this area over the ensuing year, and an added benefit ofthe conference was to expose this progress to the wider mathematicalcommunity. Approximately 150 mathematicians attended the conference,more than 50 of them graduate students. Some talks were tailoredspecifically for these students. Topology addresses those geometric properties that depend only oncontinuity, i.e., on the notion of one point being close to another, butdisregards the stock in trade of high school geometry, measurement ofquantities such as distance, angle, area, volume, and so forth. Topologyof the plane is often referred to in popular scientific literature asrubber sheet geometry, and this captures the essential spirit of thediscipline without giving so much as a hint of the techniques topologistsmight use in their science. They confront some very basic but elusiveproperties, those that remain after rigidity has been exorcised, and thepast century has seen the gradual assembly of a considerable arsenal ofweapons for dealing with these properties. Low-dimensional topology,mainly the topology of 3- and 4-dimensional geometric objects, presentsspecial problems of its own, for while we have the intuition that weshould be able to apprehend these object more readily, living as we do in3-dimensional space and 4-dimensional space-time, in fact much of thealgebraic machinery that has been developed for topology fails in theselower dimensions. Recent years have seen some remarkable advances on thisfront too, and this was the central theme of the conference at M.S.R.I. inMay. It is also noteworthy that low-dimensional topology has becomesufficiently highly developed to be useful, for example, in applicationsof knot theory to polymer chemistry and to the study of DNA. As this fieldcontinues to progress, the immediacy of the objects with which it deals islikely to lead its further technical advances to find equally naturalapplications in the real world.***
小行星9727594 该奖项将提供部分报销的旅费和生活费的发言者和与会者在会议上低维拓扑发生在数学科学研究中心,伯克利,加州,1998年5月22日至26日。 会议的目的是汇集研究人员在所有链的低维拓扑结构,使他们能够获得一个整体的视角在该领域的发展。 近年来,三维、四维流形和纽结理论的研究取得了令人振奋的新进展。 将这些领域的研究人员聚集在一起,鼓励了思想和技术的交叉施肥,使研究生接触到这些思想,并鼓励新的合作。 这次会议是在麻省理工学院一个密切相关的为期一年的项目结束一年后举行的。 因此,很自然地要审查如何在接下来的一年里巩固这一领域的进展,会议的另一个好处是向更广泛的农业界展示这一进展。 大约有150名数学家参加了会议,其中50多名是研究生。 有些讲座是专门为这些学生量身定做的。 拓扑解决了那些只依赖于连续性的几何属性,即,一个点接近另一个点的概念,但忽视了高中几何学中的交易存量,如距离,角度,面积,体积等量的测量。 平面拓扑学在通俗科学文献中常被称为橡皮片几何学,它抓住了这门学科的本质精神,却没有给出拓扑学家可能在他们的科学中使用的技术的任何暗示。 它们面临着一些非常基本但难以捉摸的特性,这些特性在刚性被驱除后仍然存在,而在过去的世纪,人们逐渐组装了大量武器来对付这些特性。 低维拓扑,主要是3维和4维几何对象的拓扑,提出了它自己的特殊问题,因为虽然我们有直觉,我们应该能够理解这些对象更容易,生活在3维空间和4维时空,事实上,许多代数机器,已开发的拓扑失败在较低的维度。 近年来,在这方面也取得了一些显著的进展,这也是M.S.R.I.会议的中心主题。在五月。 同样值得注意的是,低维拓扑学已经得到了充分的高度发展,例如,在纽结理论在高分子化学和DNA研究中的应用。 随着这一领域的不断发展,它所处理的对象的直接性很可能导致它的进一步技术进步,在真实的世界中找到同样自然的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Andrew Casson其他文献

Andrew Casson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Andrew Casson', 18)}}的其他基金

Mathematical Sciences: Representations of Three-Manifold Groups
数学科学:三流形群的表示
  • 批准号:
    9505053
  • 财政年份:
    1995
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representations of Three-Manifold Groups
数学科学:三流形群的表示
  • 批准号:
    9214499
  • 财政年份:
    1992
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representations of Three-Manifold Groups
数学科学:三流形群的表示
  • 批准号:
    8911329
  • 财政年份:
    1989
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representations of Three-Manifold Groups
数学科学:三流形群的表示
  • 批准号:
    8601507
  • 财政年份:
    1986
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Representations of Three-Manifold Groups
数学科学:三流形群的表示
  • 批准号:
    8796210
  • 财政年份:
    1986
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Decision Problems in Three-Dimensional Topology
数学科学:三维拓扑中的决策问题
  • 批准号:
    8403158
  • 财政年份:
    1984
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
Cobordism of Knots and Homology 3-Spheres (Mathematics)
结的配边和同调 3-球体(数学)
  • 批准号:
    8202155
  • 财政年份:
    1982
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant

相似国自然基金

库尔勒香梨成年果树改进涌泉根灌(MSRI)花势衰弱水分调控机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

MsRI-Planning Workshop: X-ray and Neutron Instrumentation
MsRI 规划研讨会:X 射线和中子仪器
  • 批准号:
    2219790
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
MsRI-Planning Workshop: National Center for Automated Chemical Synthesis and Democratized Molecular Innovation (ACSDMI)
MsRI-规划研讨会:国家自动化化学合成和民主化分子创新中心(ACSDMI)
  • 批准号:
    2223127
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
REU Site: Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
  • 批准号:
    2149642
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
MsRI-Planning Workshop: Workshop to Define NSF-MSRI for Experimental and Computational Needs for Multi-technique Ambient-Pressure Photoelectron Spectroscopy Beamline
MsRI 规划研讨会:定义 NSF-MSRI 以满足多技术环境压力光电子能谱束线的实验和计算需求的研讨会
  • 批准号:
    2231740
  • 财政年份:
    2022
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Cost analyses for the MSRI-1 awards
MSRI-1 奖项的成本分析
  • 批准号:
    2145993
  • 财政年份:
    2021
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Contract Interagency Agreement
MsRI-EC: Conference on Midscale Infrastructure for Quantum Photonic Science, Engineering and Technology.The Conference Will Be Held Virtually In August, 2020.
MsRI-EC:量子光子科学、工程和技术中型基础设施会议。会议将于 2020 年 8 月以虚拟方式举行。
  • 批准号:
    2034958
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Mathematical Sciences Research Institute (MSRI)
数学科学研究所(MSRI)
  • 批准号:
    1928930
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Continuing Grant
MsRI-EW: Enabling Transformative Advances in Materials Engineering through Development of Novel Approaches to Electron Microscopy
MsRI-EW:通过开发电子显微镜新方法实现材料工程的变革性进展
  • 批准号:
    2038140
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
Conference: MsRI-EW: Modular, Open Hardware-Software Prototyping Platform for the mmWave and Sub-THz Wireless Research Community. To be held virtually in Aug. 2020.
会议:MsRI-EW:用于毫米波和亚太赫兹无线研究社区的模块化、开放式硬件软件原型平台。
  • 批准号:
    2034632
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
MsRI-EW: Conference to Identify Research Infrastructure Concepts for a National Full-Scale 200 mph Wind and Wind-Water Testing Facility; Virtual; August 2020
MsRI-EW:确定国家全尺寸 200 英里/小时风和风水测试设施研究基础设施概念的会议;
  • 批准号:
    2034656
  • 财政年份:
    2020
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了