A New Thermodynamic Formalism for Neuronal Ensemble Dynamics
神经元整体动力学的新热力学形式
基本信息
- 批准号:9727739
- 负责人:
- 金额:$ 19.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2002-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
IBN 97-27739 SO, SCHIFF, GLUCKMANN. An understanding of synchronous activities within an ensemble of neurons is essential in the study of neuroscience. It is important to understand and characterize both the computation within an ensemble, as well as the information flow between different ensembles within the brain. In the so called "binding problem", when spatially disparate neurons must coordinate to compute aspects of sensory perception, synchrony is essential. Traditionally, these issues have been addressed using the concept of identical synchrony (IS) which assumes that two or more ensembles of the brain are performing the same activities in locked time step with each other. However, in ensembles with generic nonlinear components, of which neuronal ensembles are most certainly included, more complex coherent behaviors should arise. Consequently, our concept of dynamical coherence beyond identical synchrony must be broadened. Chaos theory broadly encompasses the study of such nonlinear dynamical systems. A major theoretical advance in this field was the recognition that seeming erratic behaviors from these nonlinear systems could be effectively characterized by a set of special unstable equilibrium states. In a cartoonist view, these so called unstable periodic orbits (UPOs) are hills and valleys of an abstract dynamical landscape. As the system progresses in time, the state of the systems can be described by a trajectory within this dynamical landscape constructed with the UPOs. For coupled systems (neurons), the arrangement and symmetry of these hills and valleys reflect the varying degree of dynamical coherence exhibited within the system. Most importantly, analogous to statistical mechanics in physics, these UPOs form a framework of microscopic states for the system and their structural changes afford a description for the topographical changes within this dynamical landscape. A thermodynamical description based on these UPOs for the various possible dynamical coherent states might then be constructed. Theoretical tools developed will be applied to quintessential examples of neuronal coupling from our archived biological data: two coupled neurons and two ensembles of neurons. Results from this project will both theoretically broaden our understanding of coupled nonlinear oscillators, including neurons, coupled mechanical and electronic devices, etc., and will serve as the initial attempt to experimentally characterize the grammatical code used between ensembles of neurons.
IBN 97-27739 SO,希夫,格鲁克曼。了解神经元整体内的同步活动在神经科学研究中是必不可少的。 重要的是要理解和表征集成中的计算,以及大脑中不同集成之间的信息流。 在所谓的“绑定问题”中,当空间上不同的神经元必须协调来计算感官知觉的各个方面时,同步是必不可少的。传统上,这些问题已经使用相同同步(IS)的概念来解决,该概念假设大脑的两个或多个集合在彼此锁定的时间步长中执行相同的活动。 然而,在合奏与通用的非线性组件,其中神经元合奏是最肯定的,更复杂的连贯行为应该出现。 因此,我们的概念的动力学一致性超越了相同的同步必须扩大。 混沌理论广泛地涵盖了对这种非线性动力系统的研究。 这一领域的一个主要理论进展是认识到,这些非线性系统看似不稳定的行为可以有效地用一组特殊的不稳定平衡态来表征。 在漫画家看来,这些所谓的不稳定周期轨道(UPO)是抽象动力学景观的山丘和山谷。 随着系统在时间上的进展,系统的状态可以通过用UPO构建的动态景观内的轨迹来描述。 对于耦合系统(神经元),这些峰和谷的排列和对称性反映了系统内动态一致性的变化程度。最重要的是,类似于物理学中的统计力学,这些UPO形成了系统的微观状态框架,它们的结构变化为这个动态景观中的地形变化提供了描述。 基于这些UPO,可以构造各种可能的动力学相干态的数学描述。 开发的理论工具将被应用到我们存档的生物数据中神经元耦合的典型例子:两个耦合的神经元和两个神经元集合。 本计画之研究结果将在理论上拓宽我们对耦合非线性振子的了解,包括神经元、耦合机械与电子装置等,并将作为实验性地描述神经元集合之间使用的语法代码的初步尝试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Paul So其他文献
Observing chaos: Deducing and tracking the state of a chaotic system from limited observation.
观察混沌:从有限的观察中推断和跟踪混沌系统的状态。
- DOI:
- 发表时间:
1993 - 期刊:
- 影响因子:0
- 作者:
Paul So;Edward Ott;W. P. Dayawansa - 通讯作者:
W. P. Dayawansa
A dynamical study of pulse-coupled oscillators in the brain
- DOI:
10.1186/1471-2202-13-s1-o12 - 发表时间:
2012-07-16 - 期刊:
- 影响因子:2.300
- 作者:
Tanushree Luke;Ernest Barreto;Paul So - 通讯作者:
Paul So
Modelling the Relationship between Performance Appraisal and Organizational Productivity in Nigerian Public Sector
尼日利亚公共部门绩效评估与组织生产力之间关系的建模
- DOI:
10.4172/2375-4389.1000129 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Paul So;Olumuyiwa Fo;Esther Oa - 通讯作者:
Esther Oa
A complete dynamical study of time-varying and interconnected networks of pulse-coupled theta neurons
- DOI:
10.1186/1471-2202-14-s1-p371 - 发表时间:
2013-07-08 - 期刊:
- 影响因子:2.300
- 作者:
Tanushree B Luke;Ernest Barreto;Paul So - 通讯作者:
Paul So
Paul So的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Thermodynamic Formalism and Dimension of Overlapping Fractal Measures
热力学形式主义和重叠分形测度的维数
- 批准号:
2905612 - 财政年份:2022
- 资助金额:
$ 19.19万 - 项目类别:
Studentship
Topics in Smooth Ergodic Theory: Stochastic Properties, Thermodynamic Formalism, Coexistence
平滑遍历理论主题:随机性质、热力学形式主义、共存
- 批准号:
2153053 - 财政年份:2022
- 资助金额:
$ 19.19万 - 项目类别:
Standard Grant
New Directions in Thermodynamic Formalism for Geodesic Flows Beyond the Closed Riemannian Case
超越封闭黎曼情况的测地流热力学形式主义的新方向
- 批准号:
1954463 - 财政年份:2020
- 资助金额:
$ 19.19万 - 项目类别:
Standard Grant
Workshop - Thermodynamic Formalism: Ergodic Theory and Geometry
研讨会 - 热力学形式主义:遍历理论和几何
- 批准号:
EP/S020969/1 - 财政年份:2019
- 资助金额:
$ 19.19万 - 项目类别:
Research Grant
Conference on Thermodynamic Formalism: Dynamical Systems, Statistical Properties, and Their Applications
热力学形式主义会议:动力系统、统计特性及其应用
- 批准号:
1936829 - 财政年份:2019
- 资助金额:
$ 19.19万 - 项目类别:
Standard Grant
Thermodynamic Formalism and Homological Characteristics of Anosov Flows
阿诺索夫流的热力学形式和同调特性
- 批准号:
2105821 - 财政年份:2018
- 资助金额:
$ 19.19万 - 项目类别:
Studentship
Subadditive thermodynamic formalism
次加性热力学形式主义
- 批准号:
512690-2017 - 财政年份:2017
- 资助金额:
$ 19.19万 - 项目类别:
University Undergraduate Student Research Awards
Developing connections between dimension and the sub-additive thermodynamic formalism.
发展维度和次加性热力学形式之间的联系。
- 批准号:
1939357 - 财政年份:2017
- 资助金额:
$ 19.19万 - 项目类别:
Studentship
Critical Exponents and Thermodynamic Formalism on Geometrically Infinite Spaces
几何无限空间上的临界指数和热力学形式主义
- 批准号:
EP/P028373/1 - 财政年份:2017
- 资助金额:
$ 19.19万 - 项目类别:
Research Grant
Thermodynamic formalism for non-compact spaces with applications in conformal dynamics
非紧空间的热力学形式及其在共形动力学中的应用
- 批准号:
17K14203 - 财政年份:2017
- 资助金额:
$ 19.19万 - 项目类别:
Grant-in-Aid for Young Scientists (B)