A Practical Approach to Nonlinear Robust Control

非线性鲁棒控制的实用方法

基本信息

  • 批准号:
    9732917
  • 负责人:
  • 金额:
    $ 15.52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1998
  • 资助国家:
    美国
  • 起止时间:
    1998-09-01 至 2002-08-31
  • 项目状态:
    已结题

项目摘要

9732917BeardLinear H-infinity control is a technique for designing control laws that are robust with respect to bounded variations in system parameters and bounded external disturbances. In recent years, linear H-infinity techniques have been extended to nonlinear system. The nonlinear H-infinity control problem is solved by two first order nonlinear partial differential equations called Hamilton-Jacobi-Isaacs equations. These equations are extremely difficult to solve except in very special cases and they are difficult to approximate by standard techniques except for low order systems. The inability to solve these equations has lead to a failure to realize the potential of nonlinear H-infinity control techniques.This proposal outlines a plan to investigate innovative and computationally practical techniques for approximating closed-loop nonlinear H-infinity optimal control laws. The approach is to approximate the Hamilton-Jacobi-Isaacs equation in a two step procedure. First, an iteration in policy space is used to reduce the nonlinear partial differential equation to an infinite sequence of linear partial differential equations. The second step uses the Galerkin spectral method to approximate each linear partial differential equation. The result of this process is a feedback control law, with a well defined region of attraction, that converges to the nonlinear H-infinity solution as the order of approximation increases. The two step process outlined above suffers from Bellman's "curse of dimensionality," i.e., the required computations and memory increase exponentially with the order of the system. This "curse of dimensionality" is overcome by exploiting the structure in the problem for a fairly general class of nonlinear systems.The proposed research will advance the state of the art by supplying a practical method for approximating nonlinear H-infinity control laws. This result will be helpful to researchers working in the area, allowing them to test their ideas on real world problems, and to practicing engineers who wish to implement the latest developments in control theory research. The proposed research also advances the state of knowledge by illustrating how to mitigate the "curse of dimensionality" by exploiting the structure of optimal control for a certain class of nonlinear systems. ***
9732917 BeardLinear H ∞控制是一种设计控制律的技术,该控制律对于系统参数的有界变化和有界外部干扰是鲁棒的。 近年来,线性H ∞技术已扩展到非线性系统。 非线性H ∞控制问题由两个一阶非线性偏微分方程(Hamilton-Jacobi-Isaacs方程)求解。 这些方程是非常困难的解决,除非在非常特殊的情况下,他们很难近似的标准技术,除了低阶系统。 无法解决这些方程导致了未能实现的潜力,非线性H-∞控制techniques.This proposal概述了一个计划,调查创新和计算实用的技术,近似闭环非线性H-∞最优控制律。 该方法是近似的Hamilton-Jacobi-Isaacs方程在两个步骤的过程。 首先,在策略空间中的迭代被用来减少非线性偏微分方程的线性偏微分方程的无穷序列。 第二步用Galerkin谱方法逼近每个线性偏微分方程。 这个过程的结果是一个反馈控制律,具有一个定义良好的吸引区域,收敛到非线性H-无穷解的近似阶数增加。 上面概述的两步过程遭受贝尔曼的“维数灾难”,即,所需的计算和存储器随着系统的阶数呈指数增长。 这种“维数灾难”是克服利用的结构问题的一个相当普遍的类nonlinear systems.The拟议的研究将推进国家的艺术提供了一个实用的方法来逼近非线性H ∞控制律。 这一结果将有助于研究人员在该领域的工作,使他们能够测试他们的想法对真实的世界的问题,并实践工程师谁希望实现控制理论研究的最新发展。 所提出的研究还通过说明如何利用某类非线性系统的最优控制结构来减轻“维数灾难”来推进知识状态。 ***

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Randal Beard其他文献

UAS Flight Simulation with Hardware-in-the-loop Testing and Vision Generation
Continuous-time Trajectory Estimation: A Comparative Study Between Gaussian Process and Spline-based Approaches
连续时间轨迹估计:高斯过程和基于样条的方法之间的比较研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob C. Johnson;Joshua Mangelson;Timothy Barfoot;Randal Beard
  • 通讯作者:
    Randal Beard

Randal Beard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Randal Beard', 18)}}的其他基金

IUCRC Phase I Brigham Young University: Center for Autonomous Air Mobility and Sensing (CAAMS)
IUCRC 第一阶段杨百翰大学:自主空气流动和传感中心 (CAAMS)
  • 批准号:
    2139551
  • 财政年份:
    2022
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Continuing Grant
Student Travel Grant , 2007 American Control Conference; held New York, NY, July 11-13, 2007
学生旅费资助,2007 年美国控制会议;
  • 批准号:
    0707287
  • 财政年份:
    2007
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Standard Grant
ITR - (NHS+ASE) - (dmc+int): Distributed Communications and Control for Multiple Miniature Unmanned Air Vehicles
ITR - (NHS ASE) - (dmc int):多微型无人机的分布式通信和控制
  • 批准号:
    0428004
  • 财政年份:
    2004
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Continuing Grant

相似国自然基金

EnSite array指导下对Stepwise approach无效的慢性房颤机制及消融径线设计的实验研究
  • 批准号:
    81070152
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Data-Enabled Neural Multi-Step Predictive Control (DeMuSPc): a Learning-Based Predictive and Adaptive Control Approach for Complex Nonlinear Systems
职业:数据支持的神经多步预测控制(DeMuSPc):一种用于复杂非线性系统的基于学习的预测和自适应控制方法
  • 批准号:
    2338749
  • 财政年份:
    2024
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Standard Grant
Novel Finite Element Methods for Nonlinear Eigenvalue Problems - A Holomorphic Operator-Valued Function Approach
非线性特征值问题的新颖有限元方法 - 全纯算子值函数方法
  • 批准号:
    2109949
  • 财政年份:
    2023
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Standard Grant
Development of nonlinear Raman approach for understanding the background of vibrational polaritons
开发非线性拉曼方法来理解振动极化子的背景
  • 批准号:
    23K17904
  • 财政年份:
    2023
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
One-Way Navier-Stokes (OWNS) Approach for Linear and Nonlinear Instability and Transition in High-Speed Boundary Layers
用于解决高速边界层中线性和非线性不稳定性及转变的单向纳维斯托克斯 (OWNS) 方法
  • 批准号:
    532522-2019
  • 财政年份:
    2022
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Integrability of nonlinear partial difference and functional equations: a singularity and entropy based approach
非线性偏差和函数方程的可积性:基于奇点和熵的方法
  • 批准号:
    22H01130
  • 财政年份:
    2022
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Event-Triggered Approach to Control of Nonlinear Systems
非线性系统控制的事件触发方法
  • 批准号:
    RGPIN-2018-03722
  • 财政年份:
    2022
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Discovery Grants Program - Individual
Solving and Analyzing Nonlinear Multibody Dynamic Engineering Systems with a Piecewise Linearization Approach
使用分段线性化方法求解和分析非线性多体动态工程系统
  • 批准号:
    RGPIN-2020-06926
  • 财政年份:
    2022
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Discovery Grants Program - Individual
Peakon integrable nonlinear equations and related approximation problems: the distributional approach.
Peakon 可积非线性方程和相关逼近问题:分布方法。
  • 批准号:
    RGPIN-2019-04051
  • 财政年份:
    2022
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Discovery Grants Program - Individual
Study on the nonlinear geometric heat flow via a geometric analysis approach
通过几何分析方法研究非线性几何热流
  • 批准号:
    21K13824
  • 财政年份:
    2021
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Nonlinear, but under control: a hierarchical modelling approach to manipulating liquid films
非线性但受控:操纵液膜的分层建模方法
  • 批准号:
    2588409
  • 财政年份:
    2021
  • 资助金额:
    $ 15.52万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了