Applying Computational Chemistry to the Undergraduate Laboratory: A "Wet" Lab - "Dry" Lab Experience

将计算化学应用于本科生实验室:“湿”实验室-“干”实验室体验

基本信息

  • 批准号:
    9751013
  • 负责人:
  • 金额:
    $ 2.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1997
  • 资助国家:
    美国
  • 起止时间:
    1997-06-01 至 1999-11-30
  • 项目状态:
    已结题

项目摘要

Students have difficulty understanding the abstract atomic world of chemistry. They often learn concepts by an algorithmic approach rather than by truly understanding the underlying theory. This problem is in part due to the three-dimensional, dynamic nature of chemistry, as well as the mathematical models used to predict chemical behavior. Computational chemistry has the power to overcome these obstacles to student learning. It allows students to perceive molecules and electronic structure in three dimensions. It displays dynamical information critical to chemical behavior. Students can manipulate mathematical parameters and observe the atomic consequences. To aid student learning, this project incorporates computational chemistry into our physical, organic, and biochemistry curricula. Computational chemistry is increasingly applied at the workplace in all fields of chemistry and biochemistry. By experiencing a computational curriculum closely tied to experiments, students learn to appreciate computational chemistry in the context in which it is most often used, to predict and interpret experimental data. Free energy simulations are used to study the thermodynamics of protein folding, ligand binding, and solvation effects and of other large systems. These methods, not yet exploited in the undergraduate curriculum, have great pedagogical value in giving concrete examples of the molecular basis for thermodynamics. Since they depend on classical Newtonian physics, the underlying theory is very accessible to the undergraduate student. Through this project, undergraduate laboratories are developed using molecular-dynamics-based free energy simulations. The laboratories developed, tested, and refined here on graphics workstations are easily performed on the next generation of PCs. *
学生很难理解化学中抽象的原子世界。他们经常通过算法方法学习概念,而不是真正理解潜在的理论。这个问题在一定程度上是由于化学的三维、动态性质,以及用于预测化学行为的数学模型。计算化学有能力克服学生学习的这些障碍。它使学生能够感知分子和电子结构的三维。它显示了对化学行为至关重要的动态信息。学生们可以操纵数学参数并观察原子的后果。为了帮助学生学习,这个项目将计算化学纳入我们的物理、有机和生物化学课程。计算化学越来越多地应用于工作场所的所有化学和生物化学领域。通过体验与实验紧密相关的计算课程,学生学会在最常使用的背景下欣赏计算化学,以预测和解释实验数据。自由能模拟被用来研究蛋白质折叠、配体结合和溶剂化效应以及其他大系统的热力学。这些方法还没有在本科课程中使用,在给出热力学的分子基础的具体例子方面具有很大的教学价值。由于它们依赖于经典牛顿物理学,其基本理论对本科生来说非常容易理解。通过这个项目,使用基于分子动力学的自由能模拟来开发本科生实验室。在这里的图形工作站上开发、测试和改进的实验室可以在下一代PC上轻松执行。*

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary Karpen其他文献

Mary Karpen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Develop a Hybrid Adaptive Particle-Field Simulation Method for Solutions of Macromolecules and a New Computational Chemistry Course for Lower-Division Undergraduates
职业:开发用于大分子解决方案的混合自适应粒子场模拟方法以及低年级本科生的新计算化学课程
  • 批准号:
    2337602
  • 财政年份:
    2024
  • 资助金额:
    $ 2.98万
  • 项目类别:
    Standard Grant
TACSY: Training Alliance for Computational Systems Chemistry
TACSY:计算系统化学培训联盟
  • 批准号:
    EP/X025837/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.98万
  • 项目类别:
    Research Grant
Equipment: MRI: Track 1 Acquisition of Expansion of the Molecular Education and Research Consortium in Undergraduate Computational Chemistry (MERCURY)
设备: MRI:本科计算化学分子教育和研究联盟扩展的轨道 1 收购 (MERCURY)
  • 批准号:
    2320718
  • 财政年份:
    2023
  • 资助金额:
    $ 2.98万
  • 项目类别:
    Standard Grant
Computational prediction of hot-electron chemistry: Towards electronic control of catalysis
热电子化学的计算预测:迈向催化的电子控制
  • 批准号:
    MR/X023109/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.98万
  • 项目类别:
    Fellowship
Development of prodrug-type anticancer drugs using a design of experiment system based on computational chemistry and Bayesian optimization
利用基于计算化学和贝叶斯优化的实验系统设计开发前药型抗癌药物
  • 批准号:
    23K19424
  • 财政年份:
    2023
  • 资助金额:
    $ 2.98万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Computational Models for New Developments in Radical Chemistry
自由基化学新发展的计算模型
  • 批准号:
    10720509
  • 财政年份:
    2023
  • 资助金额:
    $ 2.98万
  • 项目类别:
Analysis of terpene cyclization reactions based on computational chemistry, synthetic organic chemistry, and biochemistry
基于计算化学、有机合成化学和生物化学的萜烯环化反应分析
  • 批准号:
    22K14791
  • 财政年份:
    2022
  • 资助金额:
    $ 2.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Computational Chemistry Supported Investigation of Sustainable Organic Coatings
计算化学支持可持续有机涂料的研究
  • 批准号:
    2748240
  • 财政年份:
    2022
  • 资助金额:
    $ 2.98万
  • 项目类别:
    Studentship
Integrating computational chemistry models of ion channels to build a holistic cardiac safety prediction tool for drug discovery
整合离子通道的计算化学模型,构建用于药物发现的整体心脏安全预测工具
  • 批准号:
    2779681
  • 财政年份:
    2022
  • 资助金额:
    $ 2.98万
  • 项目类别:
    Studentship
Geometric Deep Learning for Generative Modelling in Computational (Bio-)Chemistry
用于计算(生物)化学生成建模的几何深度学习
  • 批准号:
    2721780
  • 财政年份:
    2022
  • 资助金额:
    $ 2.98万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了