Multi-Scale Analysis for Nonlinear and Partial Differential Equations and Interacting Particle Systems
非线性和偏微分方程以及相互作用粒子系统的多尺度分析
基本信息
- 批准号:9801769
- 负责人:
- 金额:$ 15.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-08-01 至 2001-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-9801769 Markos ABSTRACT A. Technical description of the project. In this project we study problems in nonlinear parabolic and hyperbolic partial differential equations and interacting particle systems, with common underlying theme the presence and interrelation of multiple scales. We address the following topics: (a) interacting particle systems with multiple scales, giving rise to discrete velocity models at a mesocopic level, and to hyperbolic conservation laws or nonlinear diffusions, at a macroscopic one, (b) existence and stability of periodic and solitary waves for hyperbolic conservation laws in the presence of relaxation mechanisms, (c) relaxation models and related numerical schemes for front propagation problems, and (d) Monte-Carlo methods and random effects in the macroscopic limit of Ising models to geometric evolutions. In addition to the analytical aspects of the project, one of the objectives in (c) is the development of new computational tools, through relaxation models, for interface tracking applications; furthermore in (d), numerical experiments based on stochastic Ising models are employed, in an attempt to understand from a microscopic point of view the effect of random perturbations on interfacial evolutions. B.Non-technical description of the project. Phenomena involving multiple, interacting scales are widespread in areas as diverse as material science, chemical engineering, biology, atmospheric and environmental sciences, communication networks and economics. A typical example is the derivation of macroscopic properties of a material, for instance conductivity, from its microscopic-molecular or even atomic-structure. The challenges these problems present to scientists and engineers are formidable at many levels: in experiments, modelling, mathematical analysis of models, construction of effective algorithms, simulation and verification of the models. The inherent mathematical complexity of multiscale problems and our limited understanding of their nature so far, require a methodical and detailed analysis both of the actual problems, as well as of (carefully) simplified ones, that illustrate in a clearer way a particular aspect of the phenomenon under study. The proposed research addresses mainly the mathematical analysis of some paradigms in multiscale processes and touches upon the development of new computational tools, suggested by the mathematical theory. The motivation of the work stems from phase transitions problems in material science, chemical engineering applications such as adsorption processes and water waves and gas dynamics.
9801769 MARKOS摘要A.项目的技术描述。在这个项目中,我们研究了非线性抛物型和双曲型偏微分方程组和相互作用的粒子系统的问题,共同的基本主题是多个尺度的存在和相互关系。我们讨论以下问题:(A)多尺度相互作用的粒子系统,在介观水平上产生离散的速度模型,在宏观水平上引起双曲守恒律或非线性扩散,(B)存在松弛机制的双曲守恒律的周期波和孤波的存在性和稳定性,(C)前沿传播问题的松弛模型和相关的数值格式,以及(D)蒙特卡罗方法和伊辛模型宏观极限对几何演化的随机效应。除了项目的分析方面,(C)中的目标之一是开发新的计算工具,通过松弛模型,用于界面跟踪应用;此外,在(D)中,采用基于随机伊辛模型的数值实验,试图从微观角度了解随机扰动对界面演化的影响。B.非技术描述-项目描述。涉及多个相互作用的尺度的现象在材料科学、化学工程、生物学、大气和环境科学、通信网络和经济等不同领域广泛存在。一个典型的例子是从微观分子结构甚至原子结构推导出材料的宏观性质,例如导电性。这些问题对科学家和工程师提出的挑战在许多层面上都是艰巨的:在实验中,建模,模型的数学分析,有效算法的构建,模型的模拟和验证。多尺度问题内在的数学复杂性,以及我们迄今对其性质的有限理解,需要对实际问题以及(仔细地)简化的问题进行系统和详细的分析,以便更清楚地说明正在研究的现象的特定方面。拟议的研究主要针对多尺度过程中的一些范例的数学分析,并涉及到数学理论所提出的新的计算工具的开发。这项工作的动机来自材料科学中的相变问题,以及吸附过程、水波和气体动力学等化学工程应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Markos Katsoulakis其他文献
Markos Katsoulakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Markos Katsoulakis', 18)}}的其他基金
Collaborative Research CDI-Type II: Hierarchical Stochastic Algorithms for Materials Engineering.
协作研究 CDI-Type II:材料工程的分层随机算法。
- 批准号:
0835673 - 财政年份:2008
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
AMC-SS: Multiscale Methods for Many-Particle Stochastic Systems: Coarse-Graining and Microscopic Reconstruction
AMC-SS:多粒子随机系统的多尺度方法:粗粒度和微观重建
- 批准号:
0715125 - 财政年份:2007
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Multiscale Stochastic Modeling, Analysis and Computation
多尺度随机建模、分析和计算
- 批准号:
0413864 - 财政年份:2004
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
ITR: Mesoscopic Modeling and Simulation: A Novel Approach to Monte Carlo Methods
ITR:介观建模与仿真:蒙特卡罗方法的新方法
- 批准号:
0219211 - 财政年份:2002
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Mesoscopic Theories in Materials Science
材料科学中的介观理论
- 批准号:
0100872 - 财政年份:2001
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Multiple Scales for Interacting Particle Systems: Mesoscopic and Macroscopic Equations
数学科学:相互作用粒子系统的多尺度:介观和宏观方程
- 批准号:
9500717 - 财政年份:1995
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Mathematical Sciences: Multiple Scales for Interacting Particle Systems: Mesoscopic and Macroscopic Equations
数学科学:相互作用粒子系统的多尺度:介观和宏观方程
- 批准号:
9696124 - 财政年份:1995
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Imaging for Multi-scale Multi-modal and Multi-disciplinary Analysis for EnGineering and Environmental Sustainability (IM3AGES)
工程和环境可持续性多尺度、多模式和多学科分析成像 (IM3AGES)
- 批准号:
EP/Z531133/1 - 财政年份:2024
- 资助金额:
$ 15.5万 - 项目类别:
Research Grant
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Novel Analytical and Computational Approaches for Fusion and Analysis of Multi-Level and Multi-Scale Networks Data
用于多层次和多尺度网络数据融合和分析的新分析和计算方法
- 批准号:
2311297 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Collaborative Research: Analysis and Control in Multi-Scale Interface Coupling between Deformable Porous Media and Lumped Hydraulic Circuits
合作研究:可变形多孔介质与集总液压回路多尺度界面耦合分析与控制
- 批准号:
2327640 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Standard Grant
Biomedical engineering multi-scale ventricular diastolic function analysis to elucidate the pathogenesis of diastolic heart failure
生物医学工程多尺度心室舒张功能分析阐明舒张性心力衰竭发病机制
- 批准号:
23H00556 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
A multi-scale analysis of modularity and ontogenetic changes in morphology and locomotor biomechanics in the domestic dog
家犬形态和运动生物力学的模块化和个体发生变化的多尺度分析
- 批准号:
BB/X014819/1 - 财政年份:2023
- 资助金额:
$ 15.5万 - 项目类别:
Research Grant
Analysis of multi-scale biomechanical design principles of plant tissues and developmental processes
植物组织和发育过程的多尺度生物力学设计原理分析
- 批准号:
RGPIN-2018-04714 - 财政年份:2022
- 资助金额:
$ 15.5万 - 项目类别:
Discovery Grants Program - Individual
Location, Time, and Scale in GIS-Based Multi-Criteria Decision Analysis - Advancing the Agenda
基于 GIS 的多标准决策分析中的位置、时间和规模 - 推进议程
- 批准号:
RGPIN-2016-04649 - 财政年份:2022
- 资助金额:
$ 15.5万 - 项目类别:
Discovery Grants Program - Individual
A multi-scale analysis of subglacial hydrology and ice dynamics
冰下水文学和冰动力学的多尺度分析
- 批准号:
RGPIN-2017-03761 - 财政年份:2022
- 资助金额:
$ 15.5万 - 项目类别:
Discovery Grants Program - Individual
Multi-scale analysis and design of sustainable structural composites
可持续结构复合材料的多尺度分析与设计
- 批准号:
DGECR-2022-00018 - 财政年份:2022
- 资助金额:
$ 15.5万 - 项目类别:
Discovery Launch Supplement














{{item.name}}会员




