Holomorphic Dynamics and Small Divisors
全纯动力学和小除数
基本信息
- 批准号:9803090
- 负责人:
- 金额:$ 7.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-01 至 2001-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The main goal of the project is to give a complete analysis of the local dynamics of a one-dimensional holomorphic map near an indifferent irrational fixed point which is nonlinearizable due to the existence of small divisors. In particular, we want to understand the topological and metric structure of the invariant sets of the mapping (Siegel compacta) and its stability properties. This will entail sharp geometric estimates for analytic circle diffeomorphisms, tools which will be used to study the boundary of Siegel disks. A long range objective of this research is to obtain a geometric theory of small divisors applicable to higher dimensional problems and a refinement of KAM theory. The theory of dynamical systems studies the evolution of solutions of a system of differential equations describing a physical system. It is of fundamental importance in applications to determine the future evolution of the physical system. Probably the most important problem is the question of stability: Will the system have a stable evolution forever or it is going to break down at some moment? This is a common concern for engineers building planes or other moving devices, as well as with more complex situations. Mathematicians study the simplest problems to develop the tools to treat the more complex. The theory of small divisors is a fundamental tool in the study of stability in conservative situations, where some structure (a volume, a conformal structure, ...) is preserved. This work involves the study of conformal maps in the plane, that is, maps that preserve angles. In this case, there are classical small divisors theorems which guarantee stability properties. A large part of this research is devoted to the situation where the tools of small divisors fail to prove stability and the development of weaker forms of stability in that situation.
该项目的主要目标是给出一个完整的分析的局部动力学的一维全纯映射附近的一个中立的无理不动点,这是非线性化由于存在小因子。 特别是,我们要了解的拓扑和度量结构的不变集的映射(Siegel Alfreta)和它的稳定性。这将需要尖锐的几何估计解析圆同态,工具,将被用来研究边界的西格尔磁盘。 本研究的一个长期目标是获得适用于高维问题的小因子几何理论和KAM理论的改进。 动力系统理论研究描述物理系统的微分方程组的解的演化。 在应用中,确定物理系统的未来演化具有根本的重要性。 也许最重要的问题是稳定性问题:系统会永远稳定地进化,还是会在某个时刻崩溃? 这是建造飞机或其他移动设备的工程师以及更复杂情况下的常见问题。 数学家研究最简单的问题,以开发处理更复杂问题的工具。小因子理论是研究保守情况下稳定性的基本工具,其中一些结构(体积,共形结构,.)被保存了下来 这项工作涉及研究的共形地图在平面上,即地图,保持角度。 在这种情况下,有经典的小因子定理,保证稳定性。 这项研究的很大一部分是致力于小因子的工具无法证明稳定性的情况下,在这种情况下,较弱形式的稳定性的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ricardo Perez-Marco其他文献
Ricardo Perez-Marco的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ricardo Perez-Marco', 18)}}的其他基金
Holomorphic Dynamics, Small Divisors and Related Topics
全纯动力学、小除数及相关主题
- 批准号:
0202494 - 财政年份:2002
- 资助金额:
$ 7.97万 - 项目类别:
Continuing Grant
Mathematical Sciences: Holomorphic Dynamical Systems and Small Divisions
数学科学:全纯动力系统和小除法
- 批准号:
9627038 - 财政年份:1996
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
HCC: Small: Investigating the temporal dynamics of resilience during human-computer interaction: an EEG-fNIRS study
HCC:小:研究人机交互过程中弹性的时间动态:一项 EEG-fNIRS 研究
- 批准号:
2232869 - 财政年份:2023
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316306 - 财政年份:2023
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Physics Guided Graph Networks for Modeling Water Dynamics in Freshwater Ecosystems
合作研究:III:小型:用于模拟淡水生态系统中水动力学的物理引导图网络
- 批准号:
2316305 - 财政年份:2023
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Dynamics and functions of small interfering RNAs in germline cells
生殖细胞中小干扰RNA的动态和功能
- 批准号:
EP/X02296X/1 - 财政年份:2022
- 资助金额:
$ 7.97万 - 项目类别:
Fellowship
CPS: Small: Cyber-Physical Phases of Mixed Traffic with Modular & Autonomous Vehicles: Dynamics, Impacts and Management
CPS:小型:模块化混合流量的网络物理阶段
- 批准号:
2313578 - 财政年份:2022
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Integrating HDX-MS and Molecular Dynamics to investigate the mechanism of activation of the RORy by multiple small molecule modulators
整合 HDX-MS 和分子动力学研究多种小分子调节剂激活 RORy 的机制
- 批准号:
2736597 - 财政年份:2022
- 资助金额:
$ 7.97万 - 项目类别:
Studentship
Understanding mechanism of action: Combined computational and structural biology studies to determine small molecule effects on protein dynamics and function
了解作用机制:结合计算和结构生物学研究来确定小分子对蛋白质动力学和功能的影响
- 批准号:
555689-2020 - 财政年份:2022
- 资助金额:
$ 7.97万 - 项目类别:
Alliance Grants
MCA: Ecological Constraints on Hominin Population Dynamics: Small Mammal Dental Shape Analyses as Novel Paleoecological Proxies
MCA:人类种群动态的生态约束:小型哺乳动物牙齿形状分析作为新的古生态学指标
- 批准号:
2219239 - 财政年份:2022
- 资助金额:
$ 7.97万 - 项目类别:
Standard Grant
Understanding mechanism of action: Combined computational and structural biology studies to determine small molecule effects on protein dynamics and function
了解作用机制:结合计算和结构生物学研究来确定小分子对蛋白质动力学和功能的影响
- 批准号:
555689-2020 - 财政年份:2021
- 资助金额:
$ 7.97万 - 项目类别:
Alliance Grants
Observational studies of small solar system bodies: origins, dynamics and structure
太阳系小天体的观测研究:起源、动力学和结构
- 批准号:
RGPIN-2016-04433 - 财政年份:2021
- 资助金额:
$ 7.97万 - 项目类别:
Discovery Grants Program - Individual