Mathematical Investigation of Nonlinear Free Boundary Problems in Stokes Flow
斯托克斯流中非线性自由边界问题的数学研究
基本信息
- 批准号:9803358
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-07-15 至 2001-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
DMS-9803358 Principal Investigator: S. Tanveer A Mathematical Investigation of 2-D and 3-D Stokes flow This proposal outlines a mathematical investigation of a class of free boundary problems for slow viscous fluid regions in both two and three dimensions. Following recent remarkable results on the mathematical structure of such nonlinear free boundary problems in 2-D, we seek to extend the methodology to free boundary problems in three dimensions, as well as extend the results to more general doubly connected fluid regions in two dimensions. Slow viscous flows arise very naturally in many problems of drops and bubble motion. These are very important in engineering applications. Most of the work in this area relies heavily on computer calculation; for cases when the bubble boundary becomes complicated, such methods are known to run into difficulties. The proposal is to extend the known mathematical techniques so as to complement existing computer calculations with pencil and paper results that gives better intuition on the precise parameter dependences in at least a few of these problems.
DMS-9803358主要研究者:S. Tanveer二维和三维Stokes流的数学研究该建议概述了二维和三维缓慢粘性流体区域的一类自由边界问题的数学研究。最近显着的成果,这种非线性自由边界问题的数学结构在2-D,我们试图将该方法扩展到自由边界问题的三维空间,以及扩展到更一般的双连通流体区域的结果在两个维度。在许多液滴和气泡运动的问题中,很自然地会出现慢粘性流动.这些在工程应用中非常重要。 这一领域的大部分工作严重依赖于计算机计算;对于气泡边界变得复杂的情况,已知这种方法会遇到困难。该建议是扩展已知的数学技术,以补充现有的计算机计算与铅笔和纸张的结果,使更好的直观的精确的参数依赖性,至少在一些这些问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Saleh Tanveer其他文献
Saleh Tanveer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Saleh Tanveer', 18)}}的其他基金
New asymptotic methods and applications to physical problems
新的渐近方法及其在物理问题中的应用
- 批准号:
1108794 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Reserach on Nonlinear PDEs and Integro-differential equations in the complex plane
复平面上非线性偏微分方程与积分微分方程的合作研究
- 批准号:
0103829 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Standard Grant
Dynamics Of Singularities In Problems Of Fluid Mechanics
流体力学问题中的奇点动力学
- 批准号:
9500986 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Investigation of Viscous Flow in a Hele-Shaw Cell
数学科学:Hele-Shaw 单元中粘性流的研究
- 批准号:
9096125 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing Grant
Mathematical Sciences: Investigation of Viscous Flow in a Hele-Shaw Cell
数学科学:Hele-Shaw 单元中粘性流的研究
- 批准号:
8713246 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing Grant
相似海外基金
Investigation of modified water vibration by surrounding molecules via operand nonlinear optical response
通过操作数非线性光学响应研究周围分子改变的水振动
- 批准号:
23K19257 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Investigation on nonlinear response mechanisms through direct simultaneous measurement of flow field and stress field in dense particle suspension
通过直接同时测量致密颗粒悬浮液中的流场和应力场研究非线性响应机制
- 批准号:
23K17729 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Investigation of nonlinear behavior in an electric and non-Newtonian jet in an air crossflow
研究空气横流中电动和非牛顿射流的非线性行为
- 批准号:
23H01746 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
A Comprehensive Investigation of Nonlinear Shock-Induced Flutter in High-Speed Flows
高速流动中非线性冲击引起的颤振的综合研究
- 批准号:
2341192 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Experimental Investigation of Nonlinear Combustion Dynamics and Instabilities in Gas Turbine Combustors at Flight-Relevant Conditions
飞行相关条件下燃气轮机燃烧室非线性燃烧动力学和不稳定性的实验研究
- 批准号:
545915-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Synthesis and investigation of novel magneto-optical organic materials for applications in nonlinear optics and sensing.
用于非线性光学和传感应用的新型磁光有机材料的合成和研究。
- 批准号:
545856-2020 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Synthesis and investigation of novel magneto-optical organic materials for applications in nonlinear optics and sensing.
用于非线性光学和传感应用的新型磁光有机材料的合成和研究。
- 批准号:
545856-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Experimental Investigation of Nonlinear Combustion Dynamics and Instabilities in Gas Turbine Combustors at Flight-Relevant Conditions
飞行相关条件下燃气轮机燃烧室非线性燃烧动力学和不稳定性的实验研究
- 批准号:
545915-2020 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Postgraduate Scholarships - Doctoral
Investigation on a general nonlinear control based on mapping learning with controllability and reachability
基于映射学习的可控可达非线性控制研究
- 批准号:
21H03518 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of the nonlinear relaxation of electrophoresis phenomenon by ultra-high sensitive laser using self-mixing laser
利用自混合激光研究超高灵敏激光电泳现象的非线性弛豫
- 批准号:
21K03492 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)