Model Predictive Control for Nonlinear Mechanical Systems
非线性机械系统的模型预测控制
基本信息
- 批准号:9813099
- 负责人:
- 金额:$ 29.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1998
- 资助国家:美国
- 起止时间:1998-09-01 至 2005-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9813099 Wen This research project deals with the development of path planning methods using a feedback controller for a variety of fully and under-actuated mechanical systems, including robots and spacecrafts. The proposed scheme can guarantee the closed-loop asymptotic stability when information is imperfect. Furthermore, by using interior penalty functions, inequality constraints can also be handled by the algorithm. This type of feedback control law can be considered as a special class of model predictive control (MPC), since the control action at each time instance is determined based on the future trajectory. However, in contrast with the standard MPC schemes where an optimization problem needs to be solved at each control time interval, only one Newton step needs to be computed involving a fixed amount of computation. The efficacy of this algorithm has been demonstrated on a number of difficult examples, including the kinematic control of wheeled vehicles, stabilization of underactuated 6-DOF satellites, and stabilization of underactuated manipulators. The key research thrusts in the proposed research include: i)develop parameter selection rule in the algorithm that will grarantee closed loop stability; ii) quantify the stability robustness margin when the vector field is perturbed due to model imperfection and external disturbances; iii)enhance robustness through parameter adaptation; iv)utilize null space in the gradient operator for singularity avoidance and constraint handling; v)develop stategies for choosing the approximation basis in control computation and analyze the effect of approximation on convergences, and vi) apply to a number of experiments involving nonlinear mechanical systems. ***
9813099 Wen本研究项目涉及使用反馈控制器为各种全驱动和欠驱动机械系统(包括机器人和航天器)开发路径规划方法。 当信息不完全时,该方案能保证闭环系统的渐近稳定性。此外,通过使用内部罚函数,该算法还可以处理不等式约束。 这种类型的反馈控制律可以被认为是一类特殊的模型预测控制(MPC),因为在每个时刻的控制动作是基于未来的轨迹来确定的。 然而,与需要在每个控制时间间隔处求解优化问题的标准MPC方案相比,仅需要计算一个牛顿步长,涉及固定的计算量。 该算法的有效性已被证明在一些困难的例子,包括轮式车辆的运动控制,欠驱动6自由度卫星的稳定,欠驱动机械手的稳定。本文的主要研究内容包括:(1)提出了保证闭环系统稳定性的参数选择规则;(2)量化了系统在模型不完善和外部扰动下的稳定鲁棒裕度;(3)通过参数自适应提高系统的鲁棒性;(4)在梯度算子中利用零空间来避免奇异性和约束处理;(5)在非线性系统中利用零空间来提高系统的鲁棒性。v)发展了在控制计算中选择逼近基的策略,并分析了逼近对收敛的影响,vi)应用于一些涉及非线性力学系统的实验。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Wen其他文献
Collaborative Manipulation of Deformable Objects with Predictive Obstacle Avoidance
具有预测避障功能的可变形物体的协作操纵
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Burak Aksoy;John Wen - 通讯作者:
John Wen
P164. Adjacent Level Effects: A Novel Method for Assessing Kinematic Changes of the Entire Thoracolumbar Spine Following Surgical Intervention
- DOI:
10.1016/j.spinee.2009.08.425 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:
- 作者:
Erin Campbell;Kyle Elsabee;John Wason;John Wen;Allen Carl;Darryl DiRisio;Eric Ledet - 通讯作者:
Eric Ledet
John Wen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Wen', 18)}}的其他基金
GOALI: Precision Motion Control With Iterative Input Refinement
GOALI:具有迭代输入细化的精密运动控制
- 批准号:
0301827 - 财政年份:2003
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Analysis, Synthesis and Control for General Parallel Robotic Systems
通用并行机器人系统的分析、综合与控制
- 批准号:
9820709 - 财政年份:1999
- 资助金额:
$ 29.73万 - 项目类别:
Continuing Grant
A Path Space Approach to Kinematic Path Planning
运动路径规划的路径空间方法
- 批准号:
9408874 - 财政年份:1994
- 资助金额:
$ 29.73万 - 项目类别:
Continuing Grant
Passive Feedback Control with Feedforward Compensation for Flexible Structures
用于柔性结构的具有前馈补偿的无源反馈控制
- 批准号:
9113633 - 财政年份:1991
- 资助金额:
$ 29.73万 - 项目类别:
Continuing Grant
Research Initiation: A Passivity-Based Control Methodology for Distribution Parameter Systems (SGER Supplement)
研究启动:基于无源性的分布参数系统控制方法(SGER 补充)
- 批准号:
8910437 - 财政年份:1989
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
相似海外基金
Formal methods and Koopman-model predictive control
形式化方法和库普曼模型预测控制
- 批准号:
23H01434 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Realization of sparse control with model predictive control and guarantee of its performance
模型预测控制稀疏控制的实现及其性能保证
- 批准号:
23K03916 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
- 批准号:
2246022 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Performance Improvement of Massively Parallel Sample-Based Model Predictive Control
大规模并行基于样本的模型预测控制的性能改进
- 批准号:
23K03896 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ECLIPSE: Adaptable Model Predictive Control on a Chip for Personalized and Point-of-Care Plasma Medicine
ECLIPSE:用于个性化和护理点血浆医学的芯片上的自适应模型预测控制
- 批准号:
2317629 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
- 批准号:
2315963 - 财政年份:2023
- 资助金额:
$ 29.73万 - 项目类别:
Standard Grant
Crystallisation optimisation and control using surrogate modelling and adaptive model predictive control
使用代理建模和自适应模型预测控制进行结晶优化和控制
- 批准号:
2746484 - 财政年份:2022
- 资助金额:
$ 29.73万 - 项目类别:
Studentship
Model predictive control of a mixed battery array for electricity grid storage
电网存储混合电池阵列的模型预测控制
- 批准号:
RGPIN-2019-04286 - 财政年份:2022
- 资助金额:
$ 29.73万 - 项目类别:
Discovery Grants Program - Individual
Towards A Practical Model Predictive Control Framework for Networked and Distributed Dynamic Systems
面向网络和分布式动态系统的实用模型预测控制框架
- 批准号:
RGPIN-2016-05386 - 财政年份:2022
- 资助金额:
$ 29.73万 - 项目类别:
Discovery Grants Program - Individual
An Economic Model Predictive Control Framework for Smart Manufacturing
智能制造的经济模型预测控制框架
- 批准号:
RGPIN-2019-04594 - 财政年份:2022
- 资助金额:
$ 29.73万 - 项目类别:
Discovery Grants Program - Individual