ANN for Identification and Analysis of Continuous-Time Models in Energy Processing Systems

用于识别和分析能源处理系统中连续时间模型的 ANN

基本信息

  • 批准号:
    9820977
  • 负责人:
  • 金额:
    $ 19.86万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2003-06-30
  • 项目状态:
    已结题

项目摘要

ECS-9820977StankovicThe main goal of this research project is to develop a comprehensive framework for reduced-order dynamical modeling in energy processing systems. Control-oriented applications of the proposed method are envisioned in power systems (for derivation of load models, for reduction of conventional models in transient stability studies, and for controller design), electric drives (drives with elastic shafts), and motion control systems (multiple drives coupled through the mechanical subsystem).Our hypothesis is that the physical phenomena under investigation often have significantly lower dimensions than the agglomeration of ambient coordinate systems in which component models originate. We propose a methodology that combines features of analytical and physics-based approaches with artificial neural networks (ANNs), and aims to identify continuous-time differential/algebraic (DAE) models of energy processing systems.The proposed research program combines mathematical analysis and practical insight from energy engineering. Our reduced-order models ("dynamic equivalents") are formulated in continuous time, which is consistent with component models derived from physical principles. There exists a number of important differences between standard discrete and continuous dynamical systems. Models based on discrete-time ANNs may predict spurious transients and have attractors that are impossible for continuous-time systems. Our dynamic equivalent comprises differential and algebraic relationships, which is widely accepted as the most accurate representation of energy processing systems. The procedures that will be developed in this program are uniquely suited for identification of systems that exhibit multiple time scales (singularly perturbed systems) which are very common in energy processing. Resulting ANN models are based on measurements, or on (possibly multiple) simulations of detailed models that are to be simplified. We describe initial results along these directions in two examples from power systems and electric machines.This project will develop ANN architectures and training methods that are specific for the modeling tasks in energy processing systems. In particular, new connections and comparisons between standard (physics-based) models and ANN structures will be explored in the domain of "gray-box" models which combine the two classes. New developments will be evaluated within three modeling approaches: (i) time-domain, (ii) standard phasor, and (iii) dynamic phasor framework.
ECS-9820977 Stankovic本研究项目的主要目标是开发一个全面的框架,在能源处理系统的降阶动态建模。 展望了该方法在电力系统中面向控制的应用(用于推导负载模型,用于在瞬态稳定性研究中简化传统模型,以及用于控制器设计),电力驱动(带弹性轴的驱动器),和运动控制系统(通过机械子系统耦合的多个驱动器)我们的假设是,所研究的物理现象通常具有比分量模型起源于其中的环境坐标系的聚集显著更低的维度。 我们提出了一种方法,结合分析和物理为基础的方法与人工神经网络(ANN)的功能,旨在识别连续时间微分/代数(DAE)模型的能源处理systems.The建议的研究计划结合了数学分析和能源工程的实际见解。 我们的降阶模型(“动态等价物”)是在连续时间内制定的,这与从物理原理导出的组件模型是一致的。 在标准离散和连续动力系统之间存在许多重要的区别。 基于离散时间人工神经网络的模型可以预测虚假的瞬态,并具有连续时间系统不可能的吸引子。 我们的动态等效包括微分和代数关系,这是被广泛接受的能量处理系统的最准确的表示。 将在这个程序中开发的程序是唯一适合于识别的系统,表现出多个时间尺度(奇异摄动系统),这是非常常见的能量处理。 所得的ANN模型是基于测量,或(可能是多个)模拟的详细模型,要简化。 我们描述了沿着这些方向的两个例子从电力系统和电机的初步结果。这个项目将开发人工神经网络的架构和训练方法,是特定的建模任务,在能源处理系统。 特别是,新的连接和标准(基于物理的)模型和人工神经网络结构之间的比较将探讨在域中的“灰箱”模型,其中联合收割机的两个类。 新的发展将在三种建模方法中进行评估:(i)时域,(ii)标准相量,(iii)动态相量框架。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aleksandar Stankovic其他文献

Aleksandar Stankovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aleksandar Stankovic', 18)}}的其他基金

Collaborative Research: CPS: Medium: Data Driven Modeling and Analysis of Energy Conversion Systems -- Manifold Learning and Approximation
合作研究:CPS:媒介:能量转换系统的数据驱动建模和分析——流形学习和逼近
  • 批准号:
    2223986
  • 财政年份:
    2023
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Standard Grant
Collaborative Research: Information Geometry for Model Verification in Energy Systems with Renewables
合作研究:可再生能源能源系统模型验证的信息几何
  • 批准号:
    1710944
  • 财政年份:
    2017
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Standard Grant
Equation-Free Approach to System-Level Dynamic Modeling in Electric Energy Processing
电能处理系统级动态建模的无方程方法
  • 批准号:
    1137880
  • 财政年份:
    2011
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Continuing Grant
Equation-Free Approach to System-Level Dynamic Modeling in Electric Energy Processing
电能处理系统级动态建模的无方程方法
  • 批准号:
    0801415
  • 财政年份:
    2008
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Continuing Grant
Adaptive Techniques for Optimizing Power Flows in Uncertain Energy Processing Systems
优化不确定能源处理系统中功率流的自适应技术
  • 批准号:
    0601256
  • 财政年份:
    2006
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Standard Grant
EPNES: Collaborative Research: Power System Security Enhancement via Equilibrium Modeling and Environmental Assessment
EPNES:合作研究:通过平衡建模和环境评估增强电力系统安全
  • 批准号:
    0323563
  • 财政年份:
    2003
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Standard Grant
EPNES: Collaborative Research: Dynamical Models in Fault-Tolerant Operation and Control of Energy Processing Systems
EPNES:协作研究:能源处理系统容错操作和控制的动态模型
  • 批准号:
    0224707
  • 财政年份:
    2002
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Continuing Grant
CAREER: Suppression of Low-Frequency Oscillations in Power Systems and Electric Drives: A Dissipativity Approach
职业:抑制电力系统和电力驱动中的低频振荡:耗散性方法
  • 批准号:
    9502636
  • 财政年份:
    1995
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Standard Grant
RESEARCH INITIATION AWARD: Markov Chain Control of Randomized Switching in Power Converters
研究启动奖:电源转换器随机开关的马尔可夫链控制
  • 批准号:
    9410354
  • 财政年份:
    1994
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Standard Grant

相似国自然基金

相似海外基金

SCAnDi: Single-cell and single molecule analysis for DNA identification
SCAnDi:用于 DNA 鉴定的单细胞和单分子分析
  • 批准号:
    ES/Y010655/1
  • 财政年份:
    2024
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Research Grant
Identification and analysis of a novel pattern-recognition receptor that senses intracellular bacterial components
感知细胞内细菌成分的新型模式识别受体的鉴定和分析
  • 批准号:
    23H02715
  • 财政年份:
    2023
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Identification of the place of origin for oriental bezoar by genetic analysis
遗传分析鉴定牛黄产地
  • 批准号:
    23K06198
  • 财政年份:
    2023
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Locality identification of volcanic rock artifacts excavated from the Teotihuacan site by archaeological scientific analysis and LiDAR survey
通过考古科学分析和激光雷达调查对特奥蒂瓦坎遗址出土的火山岩文物进行地点识别
  • 批准号:
    23K18710
  • 财政年份:
    2023
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Identification and analysis of the three-dimensional solar plasma flows
三维太阳等离子体流的识别与分析
  • 批准号:
    2884318
  • 财政年份:
    2023
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Studentship
Characterising Neurological Disorders with Nonlinear System Identification and Network Analysis
通过非线性系统识别和网络分析来表征神经系统疾病
  • 批准号:
    EP/X020193/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Research Grant
Identification and functional analysis of immune receptors that recognize pathogen-derived fatty acids
识别病原体衍生脂肪酸的免疫受体的鉴定和功能分析
  • 批准号:
    23KF0295
  • 财政年份:
    2023
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
High-throughput identification and transcriptional analysis of autoreactive T cells in individuals with membranous nephropathy.
膜性肾病患者自身反应性 T 细胞的高通量鉴定和转录分析。
  • 批准号:
    10725558
  • 财政年份:
    2023
  • 资助金额:
    $ 19.86万
  • 项目类别:
Identification and analysis of genetic variants that enhance the expression of gravitropism in Arabidopsis roots
增强拟南芥根向地性表达的遗传变异的鉴定和分析
  • 批准号:
    23K05483
  • 财政年份:
    2023
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of coexistence relationships and phenotypic traits of virulence and resistance genes by large-scale E. coli genome analysis
通过大规模大肠杆菌基因组分析鉴定毒力和抗性基因的共存关系和表型特征
  • 批准号:
    23K07947
  • 财政年份:
    2023
  • 资助金额:
    $ 19.86万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了