CAREER: An A Priori Test of Retrieval of Coherent Structures in the Atmospheric Boundary Layer Using an Adjoint Model
职业生涯:使用伴随模型反演大气边界层相干结构的先验测试
基本信息
- 批准号:9874925
- 负责人:
- 金额:$ 20.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-02-15 至 2003-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The wind near the ground is mainly turbulent and irregular but imbedded in it are often eddies, vortices, or swirls that persist long enough to be recognizable as entities that form, grow, and eventually dissipate. These are called coherent structures and are an important class of small-scale atmospheric motions. They account for substantial transports of heat, momentum, water vapor, and pollutants, and generate small-scale turbulence. New methods of atmospheric remote sensing, in particular lidar because of its fine spatial resolution, hold the promise of observing and studying coherent structures. However, instruments like lidar that are based on the Doppler principle are limited to observing only the radial component of velocity at a given point in space, not the three-dimensional velocity vector. A challenging problem is the deduction of the three-dimensional velocity field from measurements of only the radial component. The solution is not unique: more than one wind pattern can have the same pattern of radial velocity. The approach to the problem is to constrain the number of possible solutions by requiring that the three-dimensional, time-evolving flow pattern conform to the known laws of atmospheric dynamics. This is called the adjoint method of four-dimensional data assimilation (FDDA). This project will apply FDDA to lidar data to observe and study coherent structures. Initially it will be based on simulations. A large-eddy simulation (LES) model will generate a turbulent wind field with coherent structures. Lidar measurements will be simulated by determining the radial components of velocity observable from one or more prescribed observing points in the wind field. Then FDDA will be applied to recover the complete wind field. Real observations will be simulated by degrading the resolution of the synthetic observations and adding measurement errors. These studies will indicate the accuracy and limitations of real lidar measurements and serve to define the optimum observing conditions for lidar systems of realistic capabilities. Based on the understanding gained from the simulations, experiments on observing coherent structures using real lidar data will then be undertaken. For the experimental portion of the work, the PI will collaborate with lidar specialists at his home institution and at the laboratories in Boulder, Colorado. The educational component of the CAREER grant will focus on developing instructional material for an engineering curriculum with examples from meteorology and geophysical fluid dynamics.
近地面的风主要是湍流和不规则的,但其中往往是漩涡,漩涡或漩涡,持续足够长的时间,可以被识别为形成,增长和最终消散的实体。 这些被称为相干结构,是一类重要的小尺度大气运动。 它们负责热量、动量、水蒸气和污染物的大量传输,并产生小尺度湍流。 新的大气遥感方法,特别是激光雷达,由于其良好的空间分辨率,有希望观测和研究相干结构。 然而,基于多普勒原理的激光雷达等仪器仅限于观察空间给定点的速度径向分量,而不是三维速度矢量。 一个具有挑战性的问题是推导的三维速度场的测量只有径向分量。 解不是唯一的:不止一种风型可以具有相同的径向速度模式。 解决这个问题的方法是通过要求三维、随时间变化的流动模式符合已知的大气动力学定律来限制可能解决方案的数量。 这就是四维数据同化的伴随方法(FDDA)。 本计画将应用FDDA于光达资料,以观察及研究相干结构。 最初,它将基于模拟。 大涡模拟(LES)模型将产生具有相干结构的湍流风场。 将通过确定从风场中一个或多个规定观测点观测到的速度径向分量来模拟激光雷达测量。 然后应用FDDA恢复完整的风场。 将通过降低合成观测的分辨率和增加测量误差来模拟真实的观测。 这些研究将指出真实的激光雷达测量的精度和局限性,并为具有现实能力的激光雷达系统确定最佳观测条件。 基于从模拟中获得的理解,然后将进行使用真实的激光雷达数据观测相干结构的实验。 对于实验部分的工作,PI将与激光雷达专家在他的家乡机构和在博尔德,科罗拉多的实验室合作。 CAREER赠款的教育部分将侧重于为工程课程编写教学材料,并以气象学和地球物理流体动力学为例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ching-Long Lin其他文献
Caligus ignotus n. sp. (Copepoda: Caligidae) parasitic on Poey’s scabbardfish Evoxymetopon poeyi (Günther) off Taiwan
- DOI:
10.1007/s11230-009-9223-5 - 发表时间:
2010-02-16 - 期刊:
- 影响因子:1.200
- 作者:
Ju-shey Ho;Ching-Long Lin - 通讯作者:
Ching-Long Lin
Two new species of taeniacanthid copepods (Poecilostomatoida) parasitic on marine fishes of Taiwan
- DOI:
10.1007/s11230-006-9073-3 - 发表时间:
2007-01-04 - 期刊:
- 影响因子:1.200
- 作者:
Ju-shey Ho;Ching-Long Lin - 通讯作者:
Ching-Long Lin
QCT-based Measures Of Airway Narrowing And Shape Changes Associated With Endobronchial Biopsy Tissue Measures of Airway Remodeling And Clinical Outcomes In Asthma
- DOI:
10.1016/j.jaci.2020.12.540 - 发表时间:
2021-02-01 - 期刊:
- 影响因子:
- 作者:
Jiwoong Choi;Jonathan Boomer;In Kyu Lee;Fred Shi;Stephanie Christenson;Jenna Nguyen;Leonard Bacharier;Prescott Woodruff;Michael Peters;Sanghun Choi;Ching-Long Lin;Mario Castro - 通讯作者:
Mario Castro
Near-grid-scale energy transfer and coherent structures in the convective planetary boundary layer
- DOI:
10.1063/1.870206 - 发表时间:
1999-10 - 期刊:
- 影响因子:4.6
- 作者:
Ching-Long Lin - 通讯作者:
Ching-Long Lin
Naricolax insolitus n. sp., a bomolochid copepod (Poecilostomatoida) parasitic in the nasal cavities of silver pomfret Pampus argenteus off Taiwan
- DOI:
10.1023/a:1022624906502 - 发表时间:
2003-03-01 - 期刊:
- 影响因子:1.200
- 作者:
Ju-shey Ho;Ching-Long Lin - 通讯作者:
Ching-Long Lin
Ching-Long Lin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ching-Long Lin', 18)}}的其他基金
Collaborative Research: Data Assimilation of Dual Doppler Lidar Observations of the Urban Boundary Layer
合作研究:城市边界层双多普勒激光雷达观测数据同化
- 批准号:
0352193 - 财政年份:2004
- 资助金额:
$ 20.32万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 20.32万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 20.32万 - 项目类别:
Standard Grant
Probabilistic arrival time prediction algorithm using a-priori knowledge and machine learning to enable sustainable air traffic management
使用先验知识和机器学习的概率到达时间预测算法,以实现可持续的空中交通管理
- 批准号:
24K07723 - 财政年份:2024
- 资助金额:
$ 20.32万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular Self-Assemblies Aiming at a priori Design of Functional Materials for Molecular and Biological Recognition: Coordination Based Ion Sensors and "Smart Materials".
分子自组装针对分子和生物识别功能材料的先验设计:基于配位的离子传感器和“智能材料”。
- 批准号:
RGPIN-2016-05823 - 财政年份:2022
- 资助金额:
$ 20.32万 - 项目类别:
Discovery Grants Program - Individual
Molecular Self-Assemblies Aiming at a priori Design of Functional Materials for Molecular and Biological Recognition: Coordination Based Ion Sensors and "Smart Materials".
分子自组装针对分子和生物识别功能材料的先验设计:基于配位的离子传感器和“智能材料”。
- 批准号:
RGPIN-2016-05823 - 财政年份:2021
- 资助金额:
$ 20.32万 - 项目类别:
Discovery Grants Program - Individual
Molecular Self-Assemblies Aiming at a priori Design of Functional Materials for Molecular and Biological Recognition: Coordination Based Ion Sensors and "Smart Materials".
分子自组装针对分子和生物识别功能材料的先验设计:基于配位的离子传感器和“智能材料”。
- 批准号:
RGPIN-2016-05823 - 财政年份:2020
- 资助金额:
$ 20.32万 - 项目类别:
Discovery Grants Program - Individual
Ultrasound Platform for A Priori Therapy Response Prediction
用于先验治疗反应预测的超声平台
- 批准号:
538814-2019 - 财政年份:2020
- 资助金额:
$ 20.32万 - 项目类别:
Collaborative Health Research Projects
A priori adaptive evolution predictions for antibiotic resistance through genome-wide network analyses and machine learning
通过全基因组网络分析和机器学习对抗生素耐药性进行先验适应性进化预测
- 批准号:
10155396 - 财政年份:2020
- 资助金额:
$ 20.32万 - 项目类别:
A priori adaptive evolution predictions for antibiotic resistance through genome-wide network analyses and machine learning
通过全基因组网络分析和机器学习对抗生素耐药性进行先验适应性进化预测
- 批准号:
10396537 - 财政年份:2020
- 资助金额:
$ 20.32万 - 项目类别:
A priori adaptive evolution predictions for antibiotic resistance through genome-wide network analyses and machine learning
通过全基因组网络分析和机器学习对抗生素耐药性进行先验适应性进化预测
- 批准号:
10641700 - 财政年份:2020
- 资助金额:
$ 20.32万 - 项目类别: