Aggregation Methods for Large-Scale Location Problems
大规模定位问题的聚合方法
基本信息
- 批准号:9908124
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2003-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Numerous problems in the area of distribution and in urban services require decisions about best choices of facility locations, including warehousing, service centers, and retailing decisions. Computer models can be used to help with these decisions. Such computer models usually require information on where the customers (referred to as demand points) are, how many of them there are, and what their demands are. In many computer model applications, the demand points can number in the millions. Even if all the demand point data is available, it is usually infeasible to include it all in the models. Instead, demand points are usually aggregated; for example, all the demand points in one postal code area may be assumed to be at the center of the postal code area. This aggregation reduces the size of the model, but also creates modeling error. Aggregation schemes typically used in practice are usually ad-hoc, make little or no use of the problem structure, and generally show no concern for them aggregation error. This proposal addresses means of doing demand point aggregation so as to keep the error to manageable limits. For various classes of location problems, the development of aggregation methods that build on previous work is proposed. Model parameters that affect the error will be studied, and computer testing of the aggregation methods will be performed. The research should contribute to a cumulative body of knowledge that will eventually result in demand point aggregation problems being better understood and solved. Location analysts will be better able to balance the quality of the solutions needed from computer models with the error introduced by the aggregation. The results of the research should be helpful in allowing better decisions about facilitysiting when such decisions are based on computer modeling. The results should be useful to urban and regional planners, transportation/logistics specialists, and geographers, all of whom at times are involved in choosing aggregation methods for large-scale location problems.
配送领域和城市服务中的许多问题需要做出关于设施位置的最佳选择的决策,包括仓储、服务中心和零售决策。 计算机模型可用于帮助做出这些决策。 此类计算机模型通常需要有关客户(称为需求点)在哪里、有多少客户以及他们的需求是什么的信息。 在许多计算机模型应用中,请求点的数量可能达到数百万。 即使所有需求点数据都可用,将其全部包含在模型中通常也是不可行的。 相反,需求点通常是聚合的;例如,可以假设一个邮政编码区域中的所有请求点都位于该邮政编码区域的中心。 这种聚合减少了模型的大小,但也会产生建模错误。 实践中通常使用的聚合方案通常是临时的,很少或根本不使用问题结构,并且通常不关心聚合错误。 该提案提出了进行请求点聚合的方法,以便将误差保持在可管理的限度内。 对于各种类型的位置问题,提出了基于先前工作的聚合方法的开发。 将研究影响误差的模型参数,并对聚合方法进行计算机测试。 研究应该有助于积累知识体系,最终使需求点聚合问题得到更好的理解和解决。 位置分析师将能够更好地平衡计算机模型所需的解决方案的质量与聚合引入的误差。当这些决策基于计算机建模时,研究结果应该有助于做出更好的设施选址决策。 研究结果对城市和区域规划者、交通/物流专家和地理学家应该有用,他们所有人有时都会参与选择大规模位置问题的聚合方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Francis其他文献
Novel use of differential image velocity invariants to categorize ciliary motion defects
新颖地使用差分图像速度不变量对纤毛运动缺陷进行分类
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Shannon P. Quinn;Richard Francis;C. Lo;C. Chennubhotla - 通讯作者:
C. Chennubhotla
Quality and process management: a view from the UK computing services industry
- DOI:
10.1007/bf00403765 - 发表时间:
1993-12 - 期刊:
- 影响因子:1.9
- 作者:
Richard Francis - 通讯作者:
Richard Francis
Separation of immunoglobulin G precipitate from contaminating proteins using microfiltration
使用微滤将免疫球蛋白 G 沉淀物与污染蛋白分离
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:2.8
- 作者:
G. Neal;Richard Francis;P. Shamlou;E. Keshavarz‐Moore - 通讯作者:
E. Keshavarz‐Moore
An automated packed protein G micro-pipette tip assay for rapid quantification of polyclonal antibodies in ovine serum.
一种自动包装的 Protein G 微量移液器吸头测定法,用于快速定量羊血清中的多克隆抗体。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
S. Chhatre;Richard Francis;D. Bracewell;N. Titchener - 通讯作者:
N. Titchener
Application of a Decision‐Support Tool to Assess Pooling Strategies in Perfusion Culture Processes under Uncertainty
应用决策支持工具评估不确定性下灌注培养过程中的汇集策略
- DOI:
10.1021/bp049578t - 发表时间:
2008 - 期刊:
- 影响因子:2.9
- 作者:
Ai Chye Lim;Yuhong Zhou;J. Washbrook;A. Sinclair;B. Fish;Richard Francis;Nigel John Titchener‐Hooker;S. Farid - 通讯作者:
S. Farid
Richard Francis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Francis', 18)}}的其他基金
Aggregation for Large-Scale Location Problems
大规模位置问题的聚合
- 批准号:
9522882 - 财政年份:1995
- 资助金额:
-- - 项目类别:
Continuing grant
US-West Germany Cooperative Research On Automating Robotic Assembly Workplace Planning
美国-西德关于自动化机器人装配工作场所规划的合作研究
- 批准号:
8912795 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Standard Grant
Automating Robotic Assembly Workplace Planning
自动化机器人装配工作场所规划
- 批准号:
8817840 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Standard Grant
Network Location Problems: Sensitivity and Duality
网络定位问题:敏感性和对偶性
- 批准号:
8317138 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Standard Grant
Network Flow Models of Emergency Building Evacuation
紧急建筑疏散网络流模型
- 批准号:
8215437 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Continuing grant
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Fuzzing Large Software: Principles, Methods, and Tools
职业:模糊大型软件:原理、方法和工具
- 批准号:
2340198 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402805 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Creating harmonised and scalable methods and tools for constructing households in large diverse administrative and health research datasets
创建统一且可扩展的方法和工具,用于在大型多样化的行政和健康研究数据集中构建家庭
- 批准号:
ES/X00046X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Novel In-Cell Instrumentation Methods for Large Format Prismatic Battery Cells project
用于大型棱柱形电池项目的新型内嵌仪器方法
- 批准号:
2883784 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Studentship
Clarification of health check-up behavior using a large-scale spouse pairs and development of intervention methods
大规模配偶健康检查行为的澄清及干预方法的制定
- 批准号:
23K09734 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Constructing large scale data sets, developing methods to analyze such data sets, and their empirical implementations
构建大规模数据集,开发分析此类数据集的方法及其实证实施
- 批准号:
23K17285 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
CAREER: Super-Quantile Based Methods for Analyzing Large-Scale Heterogenous Data
职业:基于超分位数的大规模异构数据分析方法
- 批准号:
2238428 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant