Improvement of Quantitative Precipitation Forecasts Using a New Microphysical Parameterization
使用新的微物理参数化改进定量降水预报
基本信息
- 批准号:9908995
- 负责人:
- 金额:$ 28.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-01-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Accurate forecasts of precipitation associated with disruptive, high-impact weather events can save lives and money. Current forecast accuracy suffers from poor representation of microphysical processes in numerical weather prediction (NWP) models. The goal of this research is to improve quantitative precipitation forecasts (QPF) in regional scale models through better formulation of microphysical processes. The central hypothesis of this project is that significant improvement in QPF in complex terrain can be reached through a consistent representation of warm, cold, and mixed-phase clouds. Explicit treatment of all growth processes will generate more accurate mass distributions and fall trajectories, leading to more accurate spatial distribution of rain and snowfall. To test the central hypothesis, the investigators will implement an improved microphysical scheme in two advanced, research numerical models, perform rigorous sensitivity studies in idealized simulations, validate forecasts of heavy rain and snowfall events using analyzed data sets, evaluate improvement in QPF and rain-snow line forecasts using statistically meaningful methods, test model performance and investigate the interaction of the dynamics and microphysics of cloud systems in real-time winter storm simulations, and determine the ratio of increase in computational time to forecast improvement.Rain and snowfall totals, Doppler and profiler radar data, as well as in situ dynamic and microphysical aircraft measurements from two already completed field projects will be used in model validation. The new version of the microphysics parameterization will be made available to the scientific community and the local NWS office in Reno, where its performance will be tested in an operational environment.
准确预报与破坏性、高影响力天气事件相关的降水量可以挽救生命和金钱。数值天气预报模式对微物理过程的模拟能力较差,影响了预报的准确性。本研究的目标是通过更好地制定微物理过程,以提高定量降水预报(QPF)在区域尺度模式。该项目的中心假设是,在复杂地形的QPF的显着改善,可以通过一个一致的代表性的温暖,寒冷,和混合相云。所有增长过程的显式处理将产生更准确的质量分布和下降轨迹,从而导致更准确的降雨和降雪的空间分布。 为了检验中心假设,研究人员将在两个先进的研究数值模式中实施改进的微物理方案,在理想化模拟中进行严格的敏感性研究,使用分析的数据集验证大雨和降雪事件的预报,使用统计学上有意义的方法评估QPF和雨雪线预报的改进,在实时冬季风暴模拟中,测试模式性能,研究云系动力学和微物理学的相互作用,并确定计算时间增加与预报改进的比率。降雨和降雪总量,多普勒和剖面仪雷达数据,以及两个已经完成的实地项目的现场动态和微物理飞机测量数据将用于模型验证。 将向科学界和里诺的当地国家气象局办公室提供新版本的微物理参数化,并在操作环境中对其性能进行测试。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vanda Grubišić其他文献
Vanda Grubišić的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vanda Grubišić', 18)}}的其他基金
Collaborative Research: An Observational, Modeling, and Climatological Study of Sierra Rotors
合作研究:Sierra Rotors 的观测、建模和气候学研究
- 批准号:
0242886 - 财政年份:2003
- 资助金额:
$ 28.89万 - 项目类别:
Continuing Grant
Numerical and Observational Study of Secondary Potential Vorticity (PV) Banners and Wakes in the Alps
阿尔卑斯山二次位涡(PV)旗和尾流的数值和观测研究
- 批准号:
0002735 - 财政年份:2001
- 资助金额:
$ 28.89万 - 项目类别:
Standard Grant
Acquisition of a High Performance Computer Cluster for Atmospheric Modeling
获取用于大气建模的高性能计算机集群
- 批准号:
0116666 - 财政年份:2001
- 资助金额:
$ 28.89万 - 项目类别:
Continuing Grant
相似海外基金
Deep Learning for Enhanced Multisensor Quantitative Precipitation Estimation
用于增强型多传感器定量降水估算的深度学习
- 批准号:
RGPIN-2018-05769 - 财政年份:2022
- 资助金额:
$ 28.89万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Enhanced Multisensor Quantitative Precipitation Estimation
用于增强型多传感器定量降水估算的深度学习
- 批准号:
RGPIN-2018-05769 - 财政年份:2021
- 资助金额:
$ 28.89万 - 项目类别:
Discovery Grants Program - Individual
Deep Learning for Enhanced Multisensor Quantitative Precipitation Estimation
用于增强型多传感器定量降水估算的深度学习
- 批准号:
RGPIN-2018-05769 - 财政年份:2020
- 资助金额:
$ 28.89万 - 项目类别:
Discovery Grants Program - Individual
EAGER: Constraining the Y-axis: Towards Quantitative Constraints for Precipitation and Temperature Using Speleothem Isotope and Trace Element Data
EAGER:约束 Y 轴:使用 Speleothem 同位素和痕量元素数据对降水和温度进行定量约束
- 批准号:
1935490 - 财政年份:2019
- 资助金额:
$ 28.89万 - 项目类别:
Standard Grant
Deep Learning for Enhanced Multisensor Quantitative Precipitation Estimation
用于增强型多传感器定量降水估算的深度学习
- 批准号:
RGPIN-2018-05769 - 财政年份:2019
- 资助金额:
$ 28.89万 - 项目类别:
Discovery Grants Program - Individual
Probabilistic bias adjustment of remotely sensed quantitative precipitation estimations to improve urban flood risk assessments in southern Canada
遥感定量降水估计的概率偏差调整以改进加拿大南部城市洪水风险评估
- 批准号:
538219-2019 - 财政年份:2019
- 资助金额:
$ 28.89万 - 项目类别:
Engage Grants Program
Deep Learning for Enhanced Multisensor Quantitative Precipitation Estimation
用于增强型多传感器定量降水估算的深度学习
- 批准号:
RGPIN-2018-05769 - 财政年份:2018
- 资助金额:
$ 28.89万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: P2C2: Quantitative Reconstructions of Holocene Precipitation Changes Across Central America
合作研究:P2C2:中美洲全新世降水变化的定量重建
- 批准号:
1502989 - 财政年份:2015
- 资助金额:
$ 28.89万 - 项目类别:
Continuing Grant
Collaborative Research: P2C2: Quantitative Reconstructions of Holocene Precipitation Changes Across Central America
合作研究:P2C2:中美洲全新世降水变化的定量重建
- 批准号:
1502740 - 财政年份:2015
- 资助金额:
$ 28.89万 - 项目类别:
Continuing Grant
Collaborative Research: P2C2: Quantitative Reconstructions of Holocene Precipitation Changes Across Central America
合作研究:P2C2:中美洲全新世降水变化的定量重建
- 批准号:
1503069 - 财政年份:2015
- 资助金额:
$ 28.89万 - 项目类别:
Continuing Grant