Valuations and Oriented Matroids
估值和定向拟阵
基本信息
- 批准号:9970525
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-06-01 至 2001-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
"Valuations and Oriented Matroids"Abstract: Oriented matroids are combinatorial objects which reflect incidence relations among convex hulls of subsets of finite sets in Euclidean space. For functions on families of convex sets, the property of being a valuation has been found to be very useful. The combination of these two ideas should result in a fruitful study of many interesting open problems in combinatorial geometry. The notion of a "linearly varying" function on uniform oriented matroids provides a means of combining the two ideas. Examples of linearly varying functions include the number of "k-sets" in a configuration of points, the number of k-faces of a simplicial convex polytope, and the number of crossings in a rectilinear drawing of the comlete graph with n vertices. The investigator will study the extremal properties of linearly varying functions on uniform oriented matroids, with the expectation that substantial knowledge about these and other linearly varying functions will be obtained. Additionally, the investigator will explore the possibility of extending the notion of linearly varying functions to oriented matroids which are not necessarily uniform. An example of a problem in combinatorial geometry is the following. Suppose n points in the plane are given, and no three are on a common line. If all of the line segments joining these points two at a time are drawn, how many crossings must there be? When n exceeds 10, no one knows what the least possible number of such crossings is. An abstract framework for studying this and other problems of combinatorial geometry in two and higher dimensions is provided by the notion of an "oriented matroid." Oriented matroids were first described about twenty-five years ago, simultaneously by several different mathematicians, and their use has been fruitful. The investigator intends to use this abstract framework in conjunction with another fruitful idea, that of a "valuation," with the expectation of solving some problems in this area. Solutions of problems in combinatorial geometry often lead to better algorithms for computational geometry, and occasionally to improved designs for computer chips.
《估值与有向拟阵》 摘要:有向拟阵是反映欧氏空间中有限集子集的凸包之间的关联关系的组合对象。对于凸集族上的函数,评估属性被发现非常有用。这两种想法的结合应该能够对组合几何中许多有趣的开放问题进行富有成效的研究。均匀定向拟阵上的“线性变化”函数的概念提供了一种结合这两种想法的方法。线性变化函数的示例包括点配置中“k 集”的数量、单纯凸多面体的 k 面数量以及具有 n 个顶点的完整图的直线图中的交叉数量。研究者将研究均匀定向拟阵上线性变化函数的极值性质,期望获得有关这些函数和其他线性变化函数的大量知识。此外,研究人员将探索将线性变化函数的概念扩展到不一定均匀的定向拟阵的可能性。下面是组合几何问题的一个示例。假设平面上有 n 个点,并且没有三个点在一条公共直线上。如果一次绘制连接这些点两个点的所有线段,则必须有多少个交叉点?当 n 超过 10 时,没有人知道这种交叉的最少可能次数是多少。 “定向拟阵”的概念提供了用于研究二维及更高维度的组合几何的这个问题和其他问题的抽象框架。大约二十五年前,几位不同的数学家同时首次描述了定向拟阵,并且它们的使用取得了丰硕的成果。研究者打算将这个抽象框架与另一个富有成效的想法(“评估”)结合使用,以期解决该领域的一些问题。组合几何问题的解决通常会带来更好的计算几何算法,有时还会改进计算机芯片的设计。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Lawrence其他文献
Improving hydrogen and volatile fatty acids production through pretreatment of spent coffee grounds
- DOI:
10.1016/j.wasman.2024.10.033 - 发表时间:
2025-01-15 - 期刊:
- 影响因子:
- 作者:
James Lawrence;Armando Oliva;Stefano Papirio;Jerry D. Murphy;Piet N.L. Lens - 通讯作者:
Piet N.L. Lens
ENTEROCOCCAL PROSTHETIC VALVE ENDOCARDITIS: A SILENT KILLER
- DOI:
10.1016/j.chest.2020.08.238 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Andrew Stevens;Patrick Miller;James Lawrence;Nayrana Griffith - 通讯作者:
Nayrana Griffith
Differential absorption LiDAR for the total column measurement of atmospheric CO2 from space
- DOI:
- 发表时间:
2012-02 - 期刊:
- 影响因子:0
- 作者:
James Lawrence - 通讯作者:
James Lawrence
Peptide cyclization via ring-closing metathesis: the N-alkenoxy peptide approach.
通过闭环复分解进行肽环化:N-烯氧基肽方法。
- DOI:
10.1039/b812611a - 发表时间:
2008 - 期刊:
- 影响因子:3.2
- 作者:
James Lawrence;M. Jourdan;Y. Vallée;V. Blandin - 通讯作者:
V. Blandin
1 A Multivariate Statistical Analysis of Stock Trends April
1 4月份股票走势多元统计分析
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
April Kerby;James Lawrence - 通讯作者:
James Lawrence
James Lawrence的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Lawrence', 18)}}的其他基金
An investigation into open-system pingos in Canada as an analogue to drift-filled hollows in London
对加拿大开放系统 pingos 的调查,将其与伦敦充满漂流的空洞进行类比
- 批准号:
NE/T013605/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
Enumerative Problems Concerning Oriented Matroids
有关有向拟阵的枚举问题
- 批准号:
0101209 - 财政年份:2001
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Oriented Matroids and Radon Partitions
数学科学:有向拟阵和氡分区
- 批准号:
8912204 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Valuations and the Combinatorics of Convex Sets
数学科学:凸集的估值和组合
- 批准号:
8711581 - 财政年份:1987
- 资助金额:
-- - 项目类别:
Continuing grant
Recovery and Interpretation of Paleoclimatic Information in Stable Isotopes of Natural Waters Using Tree-Ring Cellulose
使用树轮纤维素恢复和解释天然水域稳定同位素中的古气候信息
- 批准号:
8541987 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Standard Grant
Acquisition of an Isotope Ratio Mass Spectrometer
获取同位素比质谱仪
- 批准号:
8503671 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Standard Grant
Stable Isotopic Composition of Precipitation and Water Vaporin Extratropical Cyclones
降水和水汽温带气旋的稳定同位素组成
- 批准号:
8420333 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Continuing Grant
Recovery and Interpretation of Paleoclimatic Information in Stable Isotopes of Natural Waters Using Tree-Ring Cellulose
使用树轮纤维素恢复和解释天然水域稳定同位素中的古气候信息
- 批准号:
8116371 - 财政年份:1981
- 资助金额:
-- - 项目类别:
Continuing grant
Geochemistry of Oceanic Sediments and Igneous Rocks: Stable Isotope Studies
海洋沉积物和火成岩的地球化学:稳定同位素研究
- 批准号:
8024044 - 财政年份:1981
- 资助金额:
-- - 项目类别:
Continuing grant
Paleogeography and Paleoclimates From Stable Isotopic Studies of Ancient Kaolinites
古代高岭石稳定同位素研究的古地理和古气候
- 批准号:
8108553 - 财政年份:1981
- 资助金额:
-- - 项目类别:
Continuing grant
相似国自然基金
炭包覆纳米晶的"Oriented Attachment"生长及其多维结构构筑
- 批准号:51572015
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
6G Goal-Oriented AI-enabled Learning and Semantic Communication Networks (6G Goals)
6G目标导向的人工智能学习和语义通信网络(6G目标)
- 批准号:
10110118 - 财政年份:2024
- 资助金额:
-- - 项目类别:
EU-Funded
Diversity Oriented Clicking - Streamlined Synthesis of Molecular Frameworks
面向多样性的点击——分子框架的简化合成
- 批准号:
DE240100449 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Early Career Researcher Award
SONNETS: Scalability Oriented Novel Network of Event Triggered Systems
SONNETS:面向可扩展性的事件触发系统新型网络
- 批准号:
EP/X036006/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Carbon emission oriented next generation building energy management system
以碳排放为导向的下一代建筑能源管理系统
- 批准号:
24K20901 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Investigating heterojunction-based organic phototransistors and circuits using layer-by-layer coated highly-oriented polymer semiconductors
使用逐层涂覆的高取向聚合物半导体研究基于异质结的有机光电晶体管和电路
- 批准号:
24K17743 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists
Approaches to building patient-oriented research capacity and their applications to the transformation of healthcare services and interventions
建立以患者为中心的研究能力的方法及其在医疗保健服务和干预措施转型中的应用
- 批准号:
477895 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Salary Programs
An explainability oriented approach to manage dependent supply chain risks
一种以可解释性为导向的方法来管理相关供应链风险
- 批准号:
LP230100379 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Linkage Projects
Global RCE Network: Fostering Innovative Pedagogies and Action-oriented Education for Sustainable Development
全球 RCE 网络:促进可持续发展的创新教学法和面向行动的教育
- 批准号:
23K25713 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Making Upper Division Mathematics Courses More Relevant for Future High School Teachers: The Case of Inquiry-Oriented Dynamical Systems and Modeling
使高年级数学课程与未来高中教师更相关:以探究为导向的动力系统和建模案例
- 批准号:
2337047 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Protecting Deep Learning Systems against Hardware-Oriented Vulnerabilities
职业:保护深度学习系统免受面向硬件的漏洞的影响
- 批准号:
2426299 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant














{{item.name}}会员




