Risk Sensitive Control Theory and Financial Decision Making

风险敏感控制理论与财务决策

基本信息

  • 批准号:
    9971424
  • 负责人:
  • 金额:
    $ 8.62万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2002-06-30
  • 项目状态:
    已结题

项目摘要

The purpose of the research project is to continue the development ofnew methodologies involving mathematical control theory, stochasticanalysis, statistics of random processes, and financial mathematics for thepurpose of understanding and solving complex problems in financial decisionmaking. The heart of the proposed research involves the development ofcontinuous time, risk sensitive control models for making optimal investmentdecisions. Such models will feature underlying economic factors that aremodeled explicitly as stochastic processes, the infinite horizon criterionof maximizing the portfolio's risk adjusted growth rate, and constraints onthe trading strategies. This basic theory will be extended in at least threedirections. The first is to analogous models in discrete time, therebyleading to additional computational methods. The second is to continuoustime models which include transaction costs, thereby leading to the study ofquasi-variational inequalities. And a third extension will be to cases whereone or more of the underlying factors are not observable, thereby involvingin the case of discrete time the theory of hidden Markov models. The research is important for two principal reasons. First, the newmathematical methodologies are likely to enhance the competitiveness of U.S.financial institutions. Second, the research will lead to a betterunderstanding about risk management and how investor decisions affect andare affected by financial markets and the economy. For example, an importantspecial case of the basic model is where the assets are bonds and theunderlying factors are macroeconomic variables. The anticipated results willelucidate the relationships between investors' buying and selling decisions,the level of interest rates, and other macroeconomic variables such asunemployment rates. By looking at cases where the underlying factorscorrespond to financial derivatives, another likely by-product of thisresearch is a better understanding of how to manage risk by trading futuresand options. Additional versions of the model can be used to study theinterplay between macroeconomic variables and the stock market. Indeed,likely to emerge from this project are new explanations of business cyclesand the long range dependence of stock market prices that have been reportedin the financial literature.
该研究项目的目的是继续发展新的方法,包括数学控制理论,随机分析,随机过程统计和金融数学,以理解和解决金融决策中的复杂问题。该研究的核心是开发连续时间、风险敏感的控制模型,以做出最优的投资决策。这些模型将以被明确建模为随机过程的潜在经济因素、最大化投资组合风险调整增长率的无限范围准则以及交易策略的约束为特征。这一基本理论将至少在三个方向上得到拓展。第一种是在离散时间内模拟模型,从而导致额外的计算方法。第二个是连续时间模型,其中包括交易费用,从而导致准变分不等式的研究。第三个扩展将是一个或多个潜在因素不可观察的情况,从而涉及离散时间的隐马尔可夫模型理论。 这项研究之所以重要,主要有两个原因。首先,新的数学方法可能会提高机构的竞争力。U.S.financial其次,这项研究将使人们更好地理解风险管理以及投资者的决策如何影响金融市场和经济。例如,基本模型的一个重要特例是,资产是债券,基础因素是宏观经济变量。预期的结果将阐明投资者的购买和出售决定,利率水平和其他宏观经济变量,如失业率之间的关系。通过研究潜在因素与金融衍生品相对应的案例,这项研究的另一个可能的副产品是更好地理解如何通过交易期货和期权来管理风险。该模型的其他版本可用于研究宏观经济变量和股票市场之间的相互作用。事实上,从这个项目中可能会出现对商业周期和股票市场价格长期依赖性的新解释,这些解释已经在金融文献中得到证实。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stanley Pliska其他文献

Stanley Pliska的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stanley Pliska', 18)}}的其他基金

Optimal Inspection and Control of Stochastically Deteriora- ting Systems
随机恶化系统的最优检测和控制
  • 批准号:
    8604455
  • 财政年份:
    1986
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
Martingale Methods and Stochastic Decision Models in Operations Research
运筹学中的马丁格尔方法和随机决策模型
  • 批准号:
    8215640
  • 财政年份:
    1983
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
Controlled Storage Processes and Continuous Parameter Markov Decision Theory
受控存储过程和连续参数马尔可夫决策理论
  • 批准号:
    7609004
  • 财政年份:
    1976
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant

相似海外基金

Finite-sample Approximations for Risk-sensitive Control
风险敏感控制的有限样本近似
  • 批准号:
    575356-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
  • 批准号:
    2216765
  • 财政年份:
    2022
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
  • 批准号:
    2108683
  • 财政年份:
    2021
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
Risk-sensitive End-to-end Planning and Control
风险敏感的端到端规划和控制
  • 批准号:
    562099-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 8.62万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
  • 批准号:
    2108682
  • 财政年份:
    2021
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
Portfolio Optimization via Risk-Sensitive Control
通过风险敏感控制优化投资组合
  • 批准号:
    EP/F035578/1
  • 财政年份:
    2008
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Research Grant
Topics in Risk Sensitive Control and Financial Mathematics
风险敏感控制和金融数学专题
  • 批准号:
    9971307
  • 财政年份:
    1999
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
Risk Sensitive Control of Hybrid Systems
混合系统的风险敏感控制
  • 批准号:
    0096309
  • 财政年份:
    1998
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
Risk-sensitive stochastic control and its singular limit
风险敏感随机控制及其奇异极限
  • 批准号:
    10440030
  • 财政年份:
    1998
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Risk Sensitive Control of Hybrid Systems
混合系统的风险敏感控制
  • 批准号:
    9629866
  • 财政年份:
    1997
  • 资助金额:
    $ 8.62万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了