POWRE: Excellent Local Rings
POWRE:优秀的本地环
基本信息
- 批准号:9973069
- 负责人:
- 金额:$ 4.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2000-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI will study the relationship between excellent local rings and their completions. It has long been known that the formal fibers of a ring encode important information about the ring. Because of this, understanding the formal fiber over the zero ideal (called the generic formal fiber) of a local integral domain is critical. The PI will work to explore the relationship between a ring and its generic formal fiber. She will study the relationship between a ring R and R[X] (where X is an indeterminate) by examining the generic formal fiberof R and R[X]. She will work on the problem of characterizing when a ring satisfies the complete homomorphic images property, and will also study a question relating to the localization problem for tight closure. In addition, she will explore several rigidity questions.The project will take place at Michigan State University during the 1999-2000 academic year. The PI will spend the year collaborating with Christel Rotthaus, one of the world's leading experts in excellent rings. The PI will attend commutative algebra seminars and discuss overlapping research interests with the resident algebraists and visiting algebraists at Michigan State. This will aid the PI in broadening her research focus and learning new research skills. In addition, the PI will brainstorm with these algebraists to discover new problems in the field that will be suitable for her undergraduate students to study. The ideas coming fromthis collaboration will fuel undergraduate research projects for years to come.The PI for this project is currently in her third year as an Assistant Professor at Williams College. She has previously advised the research of four undergraduate students and is currently advising the research of another. She is dedicated to contributing to the advancement of undergraduate research in mathematics by continuing along and broadening her own research path and advising the original research of undergraduates.The PI will devote a major portion of this project to broadening the focus of her research and the focus of the problems on which her undergraduate students can work. A one-time input of funds at this critical stage will serve to greatly advance her career as a mathematician at a highly selective liberal arts college.
PI将研究优秀局部环与它们的完备性之间的关系。人们早就知道,环的形式纤维编码了关于环的重要信息。正因为如此,理解局部积分域的零理想上的形式纤维(称为一般形式纤维)是至关重要的。PI将致力于探索环与其普通形式纤维之间的关系。她将通过考察R和R[X]的一般形式纤维来研究环R和R[X](其中X是不定的)之间的关系。她将致力于刻画环何时满足完全同态映象性质的问题,并将研究与紧闭集的局部化问题有关的问题。此外,她还将探讨几个僵化问题。该项目将于1999-2000学年在密歇根州立大学进行。PI将在今年与克里斯特尔·罗特豪斯合作,克里斯特尔·罗特乌斯是世界领先的优秀吊环专家之一。PI将参加交换代数研讨会,并与密歇根州立大学的常驻代数学家和访问代数学家讨论重叠的研究兴趣。这将有助于PI拓宽她的研究范围和学习新的研究技能。此外,PI将与这些代数学家集思广益,发现该领域的新问题,适合她的本科生学习。来自这一合作的想法将在未来几年推动本科生的研究项目。这个项目的PI目前是她在威廉姆斯学院担任助理教授的第三年。她之前曾为四名本科生的研究提供建议,目前正在为另一名本科生的研究提供建议。她致力于通过继续和拓宽自己的研究道路,并为本科生的原创研究提供建议,为促进本科生的数学研究做出贡献。PI将把这个项目的主要部分投入到拓宽她的研究重点和她的本科生可以研究的问题的重点上。在这个关键阶段一次性投入资金,将极大地促进她在一所高度挑剔的文理学院担任数学家的职业生涯。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Susan Loepp其他文献
Susan Loepp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Susan Loepp', 18)}}的其他基金
REU Site: The Williams College SMALL REU program
REU 站点:威廉姆斯学院小型 REU 项目
- 批准号:
0850577 - 财政年份:2009
- 资助金额:
$ 4.88万 - 项目类别:
Continuing Grant
CCLI-EMD: An Interdisciplinary Course for Undergraduates on Protecting Information
CCLI-EMD:本科生信息保护跨学科课程
- 批准号:
9980900 - 财政年份:2000
- 资助金额:
$ 4.88万 - 项目类别:
Standard Grant
相似海外基金
Development of Concrete Building Material with Excellent Radio Wave Permeability
具有优异电波透过性的混凝土建筑材料的开发
- 批准号:
22KJ1334 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Grant-in-Aid for JSPS Fellows
The Study on "Pedagogy" Related to Training Excellent Teaching Professionals Based on Comparing with Different Countries
基于各国比较的优秀教学人才培养的“教育学”研究
- 批准号:
23H00936 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of extracorporeal VAD housing having excellent blood compatibility using anti-fouling peptide immobilization technology
利用防污肽固定技术开发具有优异血液相容性的体外 VAD 外壳
- 批准号:
23KK0204 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Preparation of high Li ion conductive soft acid-based sulfide with excellent productivity and recyclability and fabrication of all-solid-state batteries
具有优异生产率和可回收性的高锂离子导电软酸基硫化物的制备及全固态电池的制造
- 批准号:
23H01685 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Machine learning to find new extraction solvents that has both excellent performance for separation and recovery of rare metals and low environmental impacts
机器学习寻找新的萃取溶剂,该溶剂既具有优异的稀有金属分离和回收性能,又对环境影响低
- 批准号:
23H01756 - 财政年份:2023
- 资助金额:
$ 4.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Granular Bioink Made-To-Order from Macroporous Collagen Particles Offers Excellent Printability, Shape Fidelity, and Reduced Tissue Contraction
由大孔胶原颗粒定制的颗粒生物墨水具有出色的印刷适性、形状保真度和减少的组织收缩
- 批准号:
576571-2022 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Idea to Innovation
Demonstration experiment of the scientific discovery "Wood has excellent properties as mother material of hybrid members by reinforcement such as steel rod, FRP rod, or FRP sheet."
科学发现的示范实验“木材作为钢棒、FRP棒、FRP板等增强混合构件的母材,具有优异的性能”。
- 批准号:
22K18848 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Application to Smart Machining Systems using Compression of Skill Data for Inheritance of Excellent Technician's Skills
技能数据压缩应用于智能加工系统,传承优秀技师技能
- 批准号:
22K04160 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Woody biomass with excellent growth and processing properties by unconventional monomer incorporated lignin
通过非常规单体掺入木质素,木质生物质具有优异的生长和加工性能
- 批准号:
22H02413 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Examination of the excellent capacity of working memory in the visually impaired
视障人士出色工作记忆能力的检查
- 批准号:
22K12748 - 财政年份:2022
- 资助金额:
$ 4.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




