Proposal for funding for the Show-Me lectures

Show-Me 讲座的资助提案

基本信息

  • 批准号:
    9977035
  • 负责人:
  • 金额:
    $ 2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    1999
  • 资助国家:
    美国
  • 起止时间:
    1999-07-01 至 2005-08-31
  • 项目状态:
    已结题

项目摘要

The Show-Me Lectures is a series ofmeetings in mathematical analysisorganized by the following four institutions:the University of Missouri-Columbia,the University of Missouri-St. Louis,the University of Missouri-Rolla, andWashington University in St. Louis.Several lectures have been delivered in previous Show-Me meetings on many topics of Analysis, such as analysis on groups, Banach space theory, differential equations, harmonic analysis, and probability theory. These lectures were presented by prominent mathematicians from all over the world. Attendance was not restricted to specialists from one field or another but was amimed at ageneral audience who wanted to learn more about another area and explore possible connections with theirs. Such connections have certainly appeared in many instances and in several occasions have led to fruitful discussions and collaborations. Many quality collaborations have been accomplished as a result of these meetings and several more havebeen initiated. It is our belief that these collaborationsbenefit not only the researchers involved but also strengthen and unify the field of mathematical analysis as an entity. Mathematical analysis can be viewed as the part ofmathematics whose primary roots lie in calculus. Its principal concepts are derivatives and integrals, which appear in a multitude of different settings.Mathematical analysis provides the foundation for applied mathematics, physics, astronomy and other areas, and is one of the more dynamic, viable, and applicable areas of mathematics today.Among the many subspecialties of analysis of importance to science and pure mathematics, one may cite the theoryof integral transforms, which plays a major role in tomography, the theory of wavelets, which in recent years has revolutionized the study of signal processing, and the theory of Banach spaces, in which mathematicians haveconstructed a richly endowed universe with infinitely many dimensions.Recent Showme seminars have included principal lectures on each of thesesubjects, and on numerous other topics in analysis, by distinguishedmathematicians, some from various of our four universities in Missouriand some from further afield. The primary objective of the Showme meetings is to stimulate, promote, and enhance interaction between the different groups of mathematical analysis.In addition to the stimulating lectures, these meetings are providing splendid opportunites for the analysts in Missouri and nearby states to learn about each other's work and to initiatecollaborations. We anticipate many more fruitful seminars in times tocome.
演示讲座是由以下四个机构组织的一系列数学分析会议:密苏里大学哥伦比亚分校、密苏里大学圣彼得堡分校。路易斯大学、密苏里大学罗拉分校和圣路易斯的华盛顿大学。在以前的演示会议上,曾就许多分析主题发表过几次演讲,如群分析、Banach空间理论、微分方程、调和分析和概率论。这些讲座是由来自世界各地的杰出数学家发表的。与会者并不局限于某一领域的专家,而是面向想要更多地了解另一个领域并探索与他们的领域可能的联系的普通观众。这种联系肯定出现在许多情况下,并在几个场合导致了富有成效的讨论和合作。通过这些会议,已经完成了许多高质量的协作,并启动了几项更多的协作。我们相信,这些合作不仅使参与的研究人员受益,而且加强和统一了数学分析领域作为一个整体。数学分析可以看作是数学的一部分,其主要根源在于微积分。它的主要概念是导数和积分,它们出现在许多不同的环境中。数学分析为应用数学、物理、天文学和其他领域提供了基础,是当今数学中更具活力、更可行和更适用的领域之一。在对科学和纯数学具有重要意义的许多分支学科中,人们可以引用在层析成像中起重要作用的积分变换理论、近年来革命性地改变了信号处理研究的小波理论以及Banach空间理论。在这些理论中,数学家构建了一个具有无限多维的丰富的宇宙。最近的研讨会包括关于每个主题的主要讲座,在分析中的许多其他主题上,由杰出的数学家提出,其中一些来自密苏里州四所大学中的不同大学,另一些来自更远的地方。Showme会议的主要目标是刺激、促进和加强不同数学分析小组之间的互动。除了激动人心的讲座外,这些会议还为密苏里州和附近各州的分析师提供了相互了解彼此的工作和发起合作的绝佳机会。我们期待在未来的时间里举办更多富有成果的研讨会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Loukas Grafakos其他文献

Multilinear generalized Radon transforms and point configurations
多线性广义 Radon 变换和点配置
  • DOI:
    10.1515/forum-2013-0128
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Loukas Grafakos;A. Greenleaf;A. Iosevich;E. Palsson
  • 通讯作者:
    E. Palsson
Singular Integrals of Convolution Type
  • DOI:
    10.1007/978-1-4939-1194-3_5
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Loukas Grafakos
  • 通讯作者:
    Loukas Grafakos
An improvement of the Marcinkiewicz multiplier theorem
  • DOI:
    10.1007/s11856-021-2176-3
  • 发表时间:
    2021-08-21
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Loukas Grafakos
  • 通讯作者:
    Loukas Grafakos
ON THE NORM OF THE OPERATOR aI plus bH ON L-p(R)
关于 L-p(R) 上操作员 aI 加上 bH 的范数
Littlewood–Paley Theory and Multipliers
利特伍德-佩利理论和乘数
  • DOI:
    10.1007/978-1-4939-1194-3_6
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Loukas Grafakos
  • 通讯作者:
    Loukas Grafakos

Loukas Grafakos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Loukas Grafakos', 18)}}的其他基金

Fourier Analysis: Space, Frequency, and Direction
傅里叶分析:空间、频率和方向
  • 批准号:
    0900946
  • 财政年份:
    2009
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Fourier Analysis: Old Themes, New Perspectives
傅里叶分析:旧主题,新视角
  • 批准号:
    0400387
  • 财政年份:
    2004
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant
Topics in Linear and Multilinear Harmonic Analysis
线性和多线性谐波分析主题
  • 批准号:
    0099881
  • 财政年份:
    2001
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Research in Classical Harmonic Analysis and Applications to Partial Differential Equations
数学科学:经典调和分析及其在偏微分方程中的应用研究
  • 批准号:
    9623120
  • 财政年份:
    1996
  • 资助金额:
    $ 2万
  • 项目类别:
    Continuing Grant

相似海外基金

Conference: Supplementary funding for the BIRS-CMO workshop Optimal Transport and Dynamics (24s5198)
会议:BIRS-CMO 研讨会最佳运输和动力学的补充资金 (24s5198)
  • 批准号:
    2401019
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Standard Grant
Increasing farming competitiveness, profitability and resilience by removal of greenhouse gases (R-LEAF): follow-on funding
通过消除温室气体提高农业竞争力、盈利能力和复原力 (R-LEAF):后续资金
  • 批准号:
    10090632
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Collaborative R&D
An Integrated Model of Contextual Safety, Social Safety, and Social Vigilance as Psychosocial Contributors to Cardiovascular Disease
情境安全、社会安全和社会警惕作为心血管疾病社会心理因素的综合模型
  • 批准号:
    10749134
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
The neural underpinnings of speech and nonspeech auditory processing in autism: Implications for language
自闭症患者言语和非言语听觉处理的神经基础:对语言的影响
  • 批准号:
    10827051
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
Childhood trauma, hippocampal function, and anhedonia among those at heightened risk for psychosis
精神病高危人群中的童年创伤、海马功能和快感缺失
  • 批准号:
    10825287
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
Improving funding allocation to places for Levelling Up
改善升级地方的资金分配
  • 批准号:
    ES/Z000157/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Research Grant
Understanding how exocrine-derived signals promote beta cell growth
了解外分泌信号如何促进 β 细胞生长
  • 批准号:
    10750765
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
South African Modernism (Follow-on-Funding): Decolonising English Literary Studies In and Beyond the Classroom
南非现代主义(后续资助):课堂内外的英国文学研究去殖民化
  • 批准号:
    AH/Z50581X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
    Research Grant
Implementation of Innovative Treatment for Moral Injury Syndrome: A Hybrid Type 2 Study
道德伤害综合症创新治疗的实施:2 型混合研究
  • 批准号:
    10752930
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
Infectious Diseases Training program in Bolivia: South-South Training with Peru
玻利维亚传染病培训项目:与秘鲁的南南培训
  • 批准号:
    10838920
  • 财政年份:
    2024
  • 资助金额:
    $ 2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了