Performance Models with Data Evolution
数据演化的性能模型
基本信息
- 批准号:9978780
- 负责人:
- 金额:$ 41.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2003-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Integer and combinatorial optimization models have many applications in engineering design as well as operations of manufacturing and distribution systems. For example, issues dealing with setup timereduction, batch size determination, scheduling, routing, etc. often call for integer and combinatorial optimization models. Traditional approaches to these problems assume that data are known with certainty. In many practical problems, data are not only uncertain, but also evolve over time. This research is devotedto models and algorithms that allow data evolution within integer programming models. This project's approach to data evolution draws upon the theory of stochastic programming, which has mainly focused on linear and convex optimization models. Because there are effective algorithms for stochastic linear and convex optimization problems, this research is dedicated to developing convex approximations for stochastic integer programs. The decision making problems to be considered involve a decision process and a data evolution process that are interwoven over time. In these models, resource commitments and operations are modeled using a mixed integer program, while data evolution is captured via a scenario tree. By combining mixed integer programming with stochastic optimization, this project will provide the next generation of Operations Research models for decision making under uncertainty.
整数和组合优化模型在工程设计以及制造和分销系统的操作中具有许多应用。 例如,处理设置时间减少、批量大小确定、调度、路由等的问题通常需要整数和组合优化模型。 解决这些问题的传统方法假设数据是确定的。 在许多实际问题中,数据不仅是不确定的,而且会随着时间的推移而演变。 这项研究致力于允许整数规划模型内的数据演化的模型和算法。 该项目的数据演化方法借鉴了随机规划理论,该理论主要关注线性和凸优化模型。 由于存在针对随机线性和凸优化问题的有效算法,因此本研究致力于开发随机整数规划的凸近似。 要考虑的决策问题涉及随着时间的推移交织在一起的决策过程和数据演化过程。在这些模型中,资源承诺和操作是使用混合整数程序建模的,而数据演变是通过场景树捕获的。 通过将混合整数规划与随机优化相结合,该项目将为不确定性下的决策提供下一代运筹学模型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julia Higle其他文献
Julia Higle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julia Higle', 18)}}的其他基金
IDEA: Integrated Decomposition for Enterprise Analysis
IDEA:企业分析的集成分解
- 批准号:
0649511 - 财政年份:2006
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
IDEA: Integrated Decomposition for Enterprise Analysis
IDEA:企业分析的集成分解
- 批准号:
0400085 - 财政年份:2004
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
Workshop: Programming Tutorials for Doctoral Students, University of Arizona, October 9-10, 2004
研讨会:博士生编程教程,亚利桑那大学,2004 年 10 月 9-10 日
- 批准号:
0323120 - 财政年份:2003
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
Research Initiation Award: Conditional Stochastic Decomposition - An Algorithmic Interface for Optimization/Simulation
研究启动奖:条件随机分解 - 用于优化/模拟的算法接口
- 批准号:
8910046 - 财政年份:1989
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
新型手性NAD(P)H Models合成及生化模拟
- 批准号:20472090
- 批准年份:2004
- 资助金额:23.0 万元
- 项目类别:面上项目
相似海外基金
EAGER: III: Learning with less data: Capitalizing on formal pedagogies and human performance to incorporate domain knowledge into deep learning models
EAGER:III:用更少的数据学习:利用正规教学法和人类表现将领域知识纳入深度学习模型
- 批准号:
2228910 - 财政年份:2022
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
Monte Carlo simulations for evaluating the performance of modern missing data techniques when estimating structural equation models with latent variables. A systematic analysis of different types of multiple imputation.
蒙特卡洛模拟用于评估现代缺失数据技术在估计具有潜在变量的结构方程模型时的性能。
- 批准号:
370960346 - 财政年份:2017
- 资助金额:
$ 41.63万 - 项目类别:
Research Grants
Using Operational Performance Data to update Design Models for the Design of Failure-Resilient Engineered Systems
使用运行性能数据更新设计模型以设计故障恢复工程系统
- 批准号:
1802489 - 财政年份:2017
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Improving high performance super computer aquatic ecosystem models with the integration of real-time citizen science data
合作研究:ABI Innovation:通过集成实时公民科学数据改进高性能超级计算机水生生态系统模型
- 批准号:
1661324 - 财政年份:2017
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
Collaborative Research: ABI Innovation: Improving high performance super computer aquatic ecosystem models with the integration of real-time citizen science data
合作研究:ABI Innovation:通过集成实时公民科学数据改进高性能超级计算机水生生态系统模型
- 批准号:
1661156 - 财政年份:2017
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
MODELS: performance MODELing of Software-defined data center networks
模型:软件定义数据中心网络的性能建模
- 批准号:
317105593 - 财政年份:2016
- 资助金额:
$ 41.63万 - 项目类别:
Research Grants
Using Operational Performance Data to update Design Models for the Design of Failure-Resilient Engineered Systems
使用运行性能数据更新设计模型以设计故障恢复工程系统
- 批准号:
1538508 - 财政年份:2015
- 资助金额:
$ 41.63万 - 项目类别:
Standard Grant
Discovery grants - Individual reverse engineering performance models from trace data
发现补助金 - 来自跟踪数据的单个逆向工程性能模型
- 批准号:
262143-2010 - 财政年份:2014
- 资助金额:
$ 41.63万 - 项目类别:
Discovery Grants Program - Individual
Discovery grants - Individual reverse engineering performance models from trace data
发现补助金 - 来自跟踪数据的单个逆向工程性能模型
- 批准号:
262143-2010 - 财政年份:2013
- 资助金额:
$ 41.63万 - 项目类别:
Discovery Grants Program - Individual
Discovery grants - Individual reverse engineering performance models from trace data
发现补助金 - 来自跟踪数据的单个逆向工程性能模型
- 批准号:
262143-2010 - 财政年份:2012
- 资助金额:
$ 41.63万 - 项目类别:
Discovery Grants Program - Individual