CAREER: An Adaptive, High-Performance Software Infrastructure for Hierarchical Systems

职业生涯:适用于分层系统的自适应、高性能软件基础设施

基本信息

  • 批准号:
    9984492
  • 负责人:
  • 金额:
    $ 25.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-15 至 2005-07-31
  • 项目状态:
    已结题

项目摘要

Data hierarchies - that is, different access speeds for different areas of computer memory - in parallel computer architectures are becoming increasingly complex. Machines with several levels of memory, including cache-coherent non-uniform memory architectures (CC-NUMA) and clusters of workstations, now dominate supercomputing. In the near future, all high-performance parallel architectures in both science and industry will be hierarchical systems, and the successful development of a general-purpose approach to programming these machines is imperative. Unfortunately, although hierarchical systems are not new, the research community has not yet developed a general and comprehensive approach to them. Fortunately, rapidly decreasing cost of processing power and recent developments in dynamic compilation and runtime support may allow solutions to this problem that were not possible before. This project will build a software infrastructure that exploits those factors to deliver high levels of application performance on hierarchical systems. The infrastructure will support the advance of computational science, serve as a model for future commercial systems, and serve as a tool to educate and expose students to explicit management of parallelism and memory hierarchies. Through collaborations with the National Center for Supercomputing Applications it will also produce a wide range of high-performance scientific and non-scientific codes developed for hierarchical systems.Technically, the project approaches the hierarchy problem with a 4-pronged attack:-A hierarchical virtual machine that abstracts resource allocation and management issues -A hierarchy-aware runtime system that offers the illusion of a non-hierarchical system by adapting an application's communication and synchronization operations-Language constructs and dynamic compiler support to tune application behavior to the hierarchy-Applications that demonstrate the value of the frameworkParts of this approach will receive support from other sources as well as this award.
并行计算机体系结构中的数据层次结构(即计算机内存不同区域的不同访问速度)正变得越来越复杂。具有多级内存的机器,包括高速缓存一致性非统一内存架构(CC-NUMA)和工作站集群,现在主导着超级计算。在不久的将来,科学和工业中的所有高性能并行架构都将是分层系统,成功开发一种通用的方法来编程这些机器是势在必行的。不幸的是,虽然等级系统不是新的,研究界还没有开发出一个通用的和全面的方法。幸运的是,处理能力成本的快速降低以及动态编译和运行时支持方面的最新发展可能会允许解决这个问题,这在以前是不可能的。该项目将构建一个软件基础设施,利用这些因素在分层系统上提供高水平的应用程序性能。该基础设施将支持计算科学的进步,作为未来商业系统的模型,并作为一种工具,教育和暴露学生的并行性和内存层次结构的显式管理。通过与国家超级计算应用中心的合作,它还将为分层系统开发各种高性能的科学和非科学代码。从技术上讲,该项目通过四管齐下的攻击来解决分层问题:- 抽象资源分配和管理问题的分层虚拟机-通过适配应用的通信和同步操作来提供非分层系统的错觉的分层感知的运行时系统-语言构造和动态编译器支持,以根据层次结构调整应用程序行为-证明该方法框架部分价值的应用程序将获得其他来源以及该奖项的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Lumetta其他文献

Steven Lumetta的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Lumetta', 18)}}的其他基金

MRI: Development of a Novel Computing Instrument for Big Data in Genomics
MRI:开发基因组学大数据新型计算仪器
  • 批准号:
    1337732
  • 财政年份:
    2013
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Standard Grant

相似海外基金

Planning: Digital Twin for Building Performance Simulation and Optimization in Adaptive Reuse Planning
规划:自适应再利用规划中用于建筑性能模拟和优化的数字孪生
  • 批准号:
    2332015
  • 财政年份:
    2023
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Standard Grant
Exploring the Role of Adaptive Capacity on Democratic Performance (ERAC-DP): Governmental and Nonprofit Organizations in the Pandemic
探索适应能力对民主绩效的作用(ERAC-DP):疫情中的政府和非营利组织
  • 批准号:
    2217427
  • 财政年份:
    2022
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Standard Grant
Understanding adaptive mechanisms in locomotion by integrating motor control, tissue performance and mechanical constraint
通过整合运动控制、组织性能和机械约束来了解运动的自适应机制
  • 批准号:
    RGPIN-2020-04884
  • 财政年份:
    2022
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring the Role of Adaptive Capacity on Democratic Performance
探索适应能力对民主绩效的作用
  • 批准号:
    ES/X000745/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Research Grant
Understanding adaptive mechanisms in locomotion by integrating motor control, tissue performance and mechanical constraint
通过整合运动控制、组织性能和机械约束来了解运动的自适应机制
  • 批准号:
    RGPIN-2020-04884
  • 财政年份:
    2021
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Discovery Grants Program - Individual
High Performance Extraction Method of Ringdown Gravitational Waves by combining Deep Learning and Adaptive Mode Decomposition
深度学习与自适应模态分解相结合的高性能衰荡引力波提取方法
  • 批准号:
    21K13926
  • 财政年份:
    2021
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding adaptive mechanisms in locomotion by integrating motor control, tissue performance and mechanical constraint
通过整合运动控制、组织性能和机械约束来了解运动的自适应机制
  • 批准号:
    RGPIN-2020-04884
  • 财政年份:
    2020
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Discovery Grants Program - Individual
CRII: CPS: High-Performance Adaptive Hybrid Feedback Algorithms for Real-Time Optimization and Learning in Networked Transportation Systems
CRII:CPS:用于网络运输系统实时优化和学习的高性能自适应混合反馈算法
  • 批准号:
    1947613
  • 财政年份:
    2020
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Standard Grant
RII Track-4: Adaptive Fault Detection and Diagnosis Based on Growing Gaussian Mixture Regressions for High-Performance HVAC Systems
RII Track-4:高性能 HVAC 系统基于增长高斯混合回归的自适应故障检测和诊断
  • 批准号:
    1929209
  • 财政年份:
    2020
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Standard Grant
Using Adaptive Inbodied Motor e-learning Interactions to improve cognitive performance in language acquisition
使用自适应身体运动电子学习交互来提高语言习得的认知表现
  • 批准号:
    2481028
  • 财政年份:
    2020
  • 资助金额:
    $ 25.96万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了