Cohomology State-Sum Invariants in Dimensions 3 and 4

3 维和 4 维上同调状态和不变量

基本信息

  • 批准号:
    9988107
  • 负责人:
  • 金额:
    $ 6.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-15 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

Proposal number: 9988107Title: Cohomology state-sum invariants in dimensions 3 and 4PI: J. Scott Carter, University of South AlabamaAbstract:New state-sum invariants for knots in 3-dimensional space andknotted surfaces in 4-dimensional space are defined by theprincipal investigator and collaborators as follows.A finite quandle is chosen. Its elements are assigned to arcsof knot diagrams (or regions of knotted surfaces) as colors,where the quandle condition holds at every crossing.Weights in the form of quandle cocycles, then, are assigned tocrossings (or triple points), the product of weights are takenover all crossings (or triple points), and the sum is taken overall possible colorings. The resulting expression is the state-suminvariant. The state-sum invariant can detect non-invertibilityof knotted surfaces. Similar state-sum invariants are defined fortriangulated 4-manifolds, using colors and weights from a cohomologytheory of quantum double of finite groups. Our project is to compute,interprete, and apply these new invariants. Relations to other theories,such as Seiberg-Witten invariants, spin-foam models of quantum gravity,are expected. Higher categorical structures are also investigated inrelation to topological quantum field theories.A knot is a circle situated in space. Knot theory studies differencesamong such knotted circles, and has applications to DNA theory andphysics. When a knot is drawn on a piece of paper with self-crossingpoints (called crossings), it is called a knot diagram.One of the methods in knot theory is to assign numbers (called colors)to arcs in a knot diagram with certain rules imposed, assign weightson crossings, and compute a number called the state-sum, by takingsum and product of weights with respect to all possible colorings.The idea of state-sums came from statistical mechanics.Instead of numbers, abstract algebraic systems can be used as colors.The principal investigator and collaborators discovered a new state-sumwhich can also be defined for higher dimensional knots --- knottedsurfaces in 4-dimensional space. They also discovered a similar state-sumfor 4-dimensional geometric objects, that are divided into small 4-dimensionaltetrahedra. The project is to compute, interprete, and apply thesenew state-sums. The investigation requires developing an intricateunderstanding of the algebraic structures that are used as colors,and the geometric study of properties of the state-sums. Relations toother physical theories are expected.
建议编号:9988107标题:3维和4维上同调状态和不变量:南阿拉巴马大学J.Scott Carter摘要:主要研究者和合作者定义了3维空间中的纽结和4维空间中的纽结曲面的新的状态和不变量如下。它的元素被分配给结点图(或结点曲面的区域)的弧线作为颜色,其中在每个交叉处都存在二进制条件。然后,以二进制余圈的形式将权重分配给交叉点(或三重点),权重的乘积被用于所有交叉点(或三重点),并对所有可能的颜色进行求和。得到的表达式是状态和不变量。状态和不变量可以检测结点曲面的不可逆性。利用有限群量子对的上同调理论中的颜色和权重,为三角4-流形定义了类似的状态和不变量。我们的项目是计算、解释和应用这些新的不变量。与其他理论的关系,如Seiberg-Witten不变量,量子引力的自旋泡沫模型,预计会出现。我们还研究了与拓扑量子场理论相关的高级范畴结构。节点是位于空间中的圆。纽结理论研究这些打结的圆之间的差异,并将其应用于DNA理论和物理学。当在一张纸上画出具有自交叉点(称为交叉点)的纽结时,它被称为纽结图。纽结理论中的一种方法是按照一定的规则给纽结图中的弧线分配数字(称为颜色),分配权重交叉,并通过取关于所有可能的着色的权重的和和乘积来计算称为状态和的数字。状态和的概念来自统计力学。抽象的代数系统可以用作颜色。主要研究者和合作者发现了一种新的状态和,该状态和也可以定义为4维空间中的高维纽结曲面。他们还发现了4维几何物体的类似状态和,这些物体被分成小的4维四面体。该项目是计算、解释和应用新的状态和。这项研究需要对用作颜色的代数结构进行复杂的理解,并对状态和的性质进行几何研究。与其他物理理论的联系也在意料之中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

J. Scott Carter其他文献

Diagrammatic Algebra
图代数
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Scott Carter;Seiichi Kamada
  • 通讯作者:
    Seiichi Kamada
Pathwise uniqueness and non-confluence property of SDEs driven by stable processes
稳定过程驱动的SDE的路径唯一性和非汇合性
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Scott Carter;Seiichi Kamada;Neal Bez;Johannes Jaerisch;李聖林;Hiroshi Tsukada
  • 通讯作者:
    Hiroshi Tsukada
Relations between quandle extensions and group extensions
Quandle 扩展和群扩展之间的关系
  • DOI:
    10.1016/j.jalgebra.2020.12.038
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Yongju Bae;J. Scott Carter;Byeorhi Kim
  • 通讯作者:
    Byeorhi Kim

J. Scott Carter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('J. Scott Carter', 18)}}的其他基金

Collaborative Research: Algebraic Structures and Cohomology Theories Associated to Knottings
合作研究:与结相关的代数结构和上同调理论
  • 批准号:
    0603926
  • 财政年份:
    2006
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Cocycle Invariants of Low-Dimensional Knots and Manifolds
合作研究:低维结和流形的共循环不变量
  • 批准号:
    0301095
  • 财政年份:
    2003
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Continuing Grant

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:
Cortical control of internal state in the insular cortex-claustrum region
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    25 万元
  • 项目类别:
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fire-retardant Solid State Electrolytes for Rechargeable Li-ion Batteries
用于可充电锂离子电池的阻燃固态电解质
  • 批准号:
    DP240102728
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Discovery Projects
Near-room Temperature Solid-state Hydrogen Storage
近室温固态储氢
  • 批准号:
    EP/Y007778/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Research Grant
Amplifying Ion Transport at the Interfaces of Solid-State Batteries
增强固态电池界面的离子传输
  • 批准号:
    EP/Z000254/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Research Grant
Probing the origin and evolution of low-oxidation state iron and copper nanoparticles in the brain
探究大脑中低氧化态铁和铜纳米粒子的起源和演化
  • 批准号:
    EP/X031403/1
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Research Grant
STTR Phase I: Advanced Lithium Metal Anodes for Solid-State Batteries
STTR 第一阶段:用于固态电池的先进锂金属阳极
  • 批准号:
    2335454
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Standard Grant
Robust Transient State Estimation for Three-Phase Power Systems
三相电力系统的鲁棒瞬态估计
  • 批准号:
    2330377
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Standard Grant
SBIR Phase II: Sodium-Based Solid-State Batteries for Stationary Energy Storage
SBIR第二阶段:用于固定储能的钠基固态电池
  • 批准号:
    2331724
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Cooperative Agreement
EA: Upgrading the Geophysics Computing Facility at Arizona State University
EA:升级亚利桑那州立大学的地球物理计算设施
  • 批准号:
    2348594
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Standard Grant
REU Site: Sustainable Physics at Penn State: From the Subatomic to the Cosmos
REU 网站:宾夕法尼亚州立大学的可持续物理学:从亚原子到宇宙
  • 批准号:
    2349159
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Continuing Grant
CAREER: Harnessing Dynamic Dipoles for Solid-State Ion Transport
职业:利用动态偶极子进行固态离子传输
  • 批准号:
    2339634
  • 财政年份:
    2024
  • 资助金额:
    $ 6.73万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了