Reflection Principle in Higher Dimensions: Geometric, Analytic and Algebraic Approaches
高维反射原理:几何、解析和代数方法
基本信息
- 批准号:0070462
- 负责人:
- 金额:$ 10.46万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A B S T R A C Tof the NSF proposal DMS-0070462" Reflection Principle in Higher Dimensions: Geometric,Analytic and Algebraic Approaches"Principal Investigator - Sergey PinchukThe proposal is focused on the following problems of analytic continuation:(i) Continuation of proper holomorphic mappings between domains with real analytic boundaries;(ii) Analyticity of continuous CR mappings between real analytic manifolds;(iii) Propagation of holomorphic and CR mappings along manifolds.The existence of biholomorphic and/or proper holomorphic mappings betweencertain domains ( or CR mappings between manifolds) imposessignificant restrictions on these domains ( manifolds ) as well as on themappings. These restrictions give rise to various, sometimes unexpected,phenomena of analytic continuation in several complex variables. The goal ofthe proposed research is to solve some concrete old problems and to providea further progress in the study of analytic continuation and relatedareas. The main method of investigation is the reflection principle, whichwill be combined with other methods from analysis, geometry, algebra anddifferential equations.Complex analysis has been used as a powerful tool in mathematics and itsapplications for a long time and has a tendency to a larger role in certainareas. For example, the famous "edge of the wedge" theorem, which is now oneof the main ingredients of the reflection principle, was discovered by aphysicist N. Bogolyubov with respect to his research in quantum fieldtheory. Another important object in theoretical physics - the Heisenberggroup -is closely connected with the group of holomorphic automorphisms of theunit ball in the 2-dimensional complex space.I believe that this research program will be useful not only for complexanalysis but also for the strengthening its ties with other areas ofmathematics and sciences by means of potential applications. It will alsoinfluence mathematical education at Indiana University via involvement ofgraduate students.
美国国家科学基金会DMS-0070462号提案的A B S T R A C T”高维反射原理:几何、解析和代数方法“的主要研究者 - Sergey Pinchuk该建议集中于以下解析延拓问题:(i)具有以下条件的域之间的真全纯映射的延拓 真实的解析边界;(ii)真实的解析流形之间的连续CR映射的解析性;(iii)全纯和CR映射沿着流形的传播.某些区域之间的双全纯和/或真全纯映射(或流形之间的CR映射)的存在性对这些区域(流形)以及这些映射施加了重要的限制.这些限制引起了各种各样的,有时意想不到的,现象的解析延续在几个复杂的变量。本文的目的是解决一些具体的老问题,为解析延拓及相关领域的研究提供一个新的进展。 复变函数的研究方法主要是反射原理,并与分析、几何、代数、微分方程等方法相结合,复变函数分析作为一种强有力的工具在数学及其应用中已经有很长的历史,并有在某些领域发挥更大作用的趋势.例如,著名的“楔边”定理,现在是反射原理的主要成分之一,是由应用物理学家N。博戈柳博夫在量子场论方面的研究。理论物理中的另一个重要对象--海森伯群--与二维复空间中单位球的全纯自同构群密切相关,我相信这一研究计划不仅对复分析有用,而且通过潜在的应用加强了它与数学和科学其他领域的联系。它也将通过研究生的参与影响印第安纳州大学的数学教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey Pinchuk其他文献
Addendum to the paper ‘‘On partial analyticity of CR mappings’‘
- DOI:
10.1007/s00209-003-0574-3 - 发表时间:
2003-09-18 - 期刊:
- 影响因子:1.000
- 作者:
Bernard Coupet;Sergey Pinchuk;Alexandre Sukhov - 通讯作者:
Alexandre Sukhov
On partial analyticity of CR mappings
- DOI:
10.1007/s002090000145 - 发表时间:
2000-11-01 - 期刊:
- 影响因子:1.000
- 作者:
Bernard Coupet;Sergey Pinchuk;Alexandre Sukhov - 通讯作者:
Alexandre Sukhov
Analyticité des applications <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" altimg="si1.gif" overflow="scroll" class="math"><mrow><mi mathvariant="script">C</mi><mi>ℛ</mi></mrow></math>
- DOI:
10.1016/s0764-4442(00)80047-6 - 发表时间:
1999-09-15 - 期刊:
- 影响因子:
- 作者:
Bernard Coupet;Sergey Pinchuk;Alexandre Sukhov - 通讯作者:
Alexandre Sukhov
Sergey Pinchuk的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sergey Pinchuk', 18)}}的其他基金
Mathematical Sciences: Holomorphic Mappings
数学科学:全纯映射
- 批准号:
9622594 - 财政年份:1996
- 资助金额:
$ 10.46万 - 项目类别:
Continuing Grant
相似海外基金
Does the functional load principle predict to how non-native English speakers assess the pronunciation intelligibility of Japanese non-native English speakers?
功能负荷原则是否可以预测非英语母语人士如何评估日语非英语母语人士的发音清晰度?
- 批准号:
24K04051 - 财政年份:2024
- 资助金额:
$ 10.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Design of Novel Heterostructures for Future Application in Optoelectronics using First Principle Simulations and Machine Learning
使用第一原理模拟和机器学习设计用于未来光电子学应用的新型异质结构
- 批准号:
24K17615 - 财政年份:2024
- 资助金额:
$ 10.46万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Scientific principle construction of two-dimensional liquid with broken inversion symmetry
反演对称性破缺二维液体的科学原理构建
- 批准号:
23K17366 - 财政年份:2023
- 资助金额:
$ 10.46万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Innovative Method for Estimating Flood Flows and Riverbed Topography from Water Surface Video Images Using the Vortex and Wave Principle
利用涡波原理从水面视频图像估算洪水流量和河床地形的创新方法
- 批准号:
23K17776 - 财政年份:2023
- 资助金额:
$ 10.46万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
The Fault Principle: Foundations and Content
过错原则:基础和内容
- 批准号:
23KJ1551 - 财政年份:2023
- 资助金额:
$ 10.46万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Study for reformation of the hearsay exceptions based on the best evidence principle
基于最佳证据原则的传闻证据例外改革研究
- 批准号:
23K01149 - 财政年份:2023
- 资助金额:
$ 10.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Understanding the computational principle of visual objects
理解视觉对象的计算原理
- 批准号:
23H03698 - 财政年份:2023
- 资助金额:
$ 10.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The principle of rapid cooling - What determines the quenching?
快速冷却的原理——什么决定了淬火?
- 批准号:
23H01357 - 财政年份:2023
- 资助金额:
$ 10.46万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Collaborative Research: Harnessing the chirality matching principle for enhanced catalytic reactivity
合作研究:利用手性匹配原理增强催化反应活性
- 批准号:
2247709 - 财政年份:2023
- 资助金额:
$ 10.46万 - 项目类别:
Continuing Grant
The operating principle of the developmental timer that controls the timing of tissue formation
控制组织形成时间的发育计时器的工作原理
- 批准号:
23K05785 - 财政年份:2023
- 资助金额:
$ 10.46万 - 项目类别:
Grant-in-Aid for Scientific Research (C)