On Some Analytic Problems Connected to the Relative Trace Formula
关于相对迹公式的一些解析问题
基本信息
- 批准号:0070611
- 负责人:
- 金额:$ 6.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project is in the realm of Number Theory. More specifically, it is inthe area of automorphic forms and representation theory.The most ambitious enterprise in automorphic forms is theLanglands program,and, especially, the issue of functorial lifting.Loosely speaking, it postulates the formation of automorphic forms ona bigger group from those on a smaller group.This bounds together some of the most outstanding open problems in NumberTheory, such as the Artin's Conjectureand the Ramanujan Hypothesis.So far, the advance in the Langlands program was accomplished alongthree major themes which are inter-related: explicit constructions ofautomorphic forms(e.g. using theta-kernels or Fourier coefficients of residues ofEisenstein series), the theory of L-functions combined withconverse theorems, and the trace formula in its various guises.The focus in this project is on the trace formula approach.All trace formulas have their origin in expressing the kernel functionin two different ways -- geometrically and spectrally.The application to functoriality comes aboutwhen trace formulas of two different groups are compared.The project deals with analytical aspects of the spectral expansionof a trace formula for {\em symmetric spaces} (also called arelative trace formula), inaugurated by Jacquet.This is a major step in establishing functoriality in such instancesas quadratic base change, and characterizing cusp forms havinga non-zero period integral over certain period subgroups.The project has 3 parts and it is a collaboration withJonathan Rogawski from UCLA (first 2 parts), andSteve Rallis and Herve Jacquet (third part).The project is a basic research in the realm of Number Theory.The more specific area is calledautomorphic forms and representation theory.The most ambitious enterprise in this field is theLanglands program.In a nutshell, the goal is to establish relationships betweenvarious objects which "live" on completely different worlds,and seemingly have little in common.Such relations are extremely deep.A spectacular and relatively recent example is a correspondence betweenmodular forms and elliptic curves, which wasa keystone in Wiles' proof of Fermat's Last Theorem.Roughly speaking, an elliptic curve is a "doughnut"which is described as the locus of two equationsof degree 3 in 4 variables.A modular form on the other hand can be thought of,in the simplest cases, asa sequence which is obtained by assigning to each integerthe sum of all its divisors (or powers of them).Beside their inherent significance in many branches of mathematics,modular forms and their related objects have found applicationsin physics, cryptography and communication systems.
这个项目属于数论领域。更具体地说,它是在自守形式和表示论领域。自守形式中最雄心勃勃的事业是朗兰兹计划,特别是函子提升问题。不严格地说,它假设自守形式从较小的群上形成较大的群。这将数论中一些最突出的开放问题结合在一起,到目前为止,朗兰兹纲领的进展是围绕着三个相互关联的主题完成的:自守形式的显式构造(例如使用θ-核或Eisenstein级数的剩余的傅立叶系数),L-函数理论与逆定理相结合,以及各种形式的迹公式。本项目的重点是迹公式方法。所有迹公式都起源于用两种不同的方式表示核函数--几何和光谱。应用函式时,两个不同群体的轨迹公式进行比较。该项目涉及的分析方面,对称空间中一个迹公式谱展开(也称为相对迹公式),由Jacquet开创。这是在诸如二次基变化的情况下建立泛函的重要一步,并表征在某些周期子群上具有非零周期积分的尖点形式。该项目有3个部分,它是与UCLA的Jonathan Rogawski合作的(前两部分),史蒂夫·拉利斯和埃尔韦·雅凯(第三部分)。该项目是数论领域的基础研究。更具体的领域被称为自守形式和表示论。在这个领域最雄心勃勃的企业是朗兰兹计划。简而言之,其目标是在“生活”在完全不同的世界上的各种对象之间建立关系,这些对象似乎没有什么共同点。这种关系非常深刻。一个引人注目的和相对较新的例子是模形式和椭圆曲线之间的对应关系,这是怀尔斯证明费马大定理的关键。粗略地说,椭圆曲线是一个“甜甜圈“,它被描述为两个3次方程的轨迹,4个变量。另一方面,在最简单的情况下,阿萨序列,通过将其所有因子之和赋给每个整数而得到模形式及其相关对象除了在数学的许多分支中具有固有的重要性外,还在物理学、密码学和通信系统中得到了应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erez Lapid其他文献
On the support of matrix coefficients of
supercuspidal representations of the general linear
group over a local non-archimedean field
局部非阿基米德域上一般线性群超尖峰表示矩阵系数的支持
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Erez Lapid - 通讯作者:
Erez Lapid
On the meromorphic continuation of Eisenstein series
论爱森斯坦级数的亚纯延续
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
J. Bernstein;Erez Lapid - 通讯作者:
Erez Lapid
Conjectures and results about parabolic induction of representations of $${\text {GL}}_n(F)$$
- DOI:
10.1007/s00222-020-00982-7 - 发表时间:
2020-07-06 - 期刊:
- 影响因子:3.600
- 作者:
Erez Lapid;Alberto Mínguez - 通讯作者:
Alberto Mínguez
Model Transition for Representations of Metaplectic Type
Metaplectic 类型表示的模型转换
- DOI:
10.1093/imrn/rnu225 - 发表时间:
2014 - 期刊:
- 影响因子:1
- 作者:
Erez Lapid;Zhengyu Mao - 通讯作者:
Zhengyu Mao
On the distinguished spectrum of $Sp_{2n}$ with respect to $Sp_n\times Sp_n$
在 $Sp_{2n}$ 相对于 $Sp_n imes Sp_n$ 的区分谱上
- DOI:
10.1215/21562261-2017-0019 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Erez Lapid;Omer Offen - 通讯作者:
Omer Offen
Erez Lapid的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2010 - 财政年份:2014
- 资助金额:
$ 6.41万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2010 - 财政年份:2013
- 资助金额:
$ 6.41万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2010 - 财政年份:2012
- 资助金额:
$ 6.41万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2010 - 财政年份:2011
- 资助金额:
$ 6.41万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2010 - 财政年份:2010
- 资助金额:
$ 6.41万 - 项目类别:
Discovery Grants Program - Individual
Some Analytic and Geometric Problems of the Ricci Flow
里奇流的一些解析和几何问题
- 批准号:
0904432 - 财政年份:2009
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2005 - 财政年份:2009
- 资助金额:
$ 6.41万 - 项目类别:
Discovery Grants Program - Individual
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2005 - 财政年份:2008
- 资助金额:
$ 6.41万 - 项目类别:
Discovery Grants Program - Individual
Fake hermitian symmetric manifolds and analytic approach to some problems in algebraic geometry
假埃尔米特对称流形及代数几何中若干问题的解析方法
- 批准号:
0758078 - 财政年份:2008
- 资助金额:
$ 6.41万 - 项目类别:
Standard Grant
Some problems in analytic and computational number theory
解析数论和计算数论中的一些问题
- 批准号:
238850-2005 - 财政年份:2006
- 资助金额:
$ 6.41万 - 项目类别:
Discovery Grants Program - Individual