Applications of Representations of Quivers
箭袋表示法的应用
基本信息
- 批准号:0070658
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2003-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Abstract.This proposal is concerned with interactions between the representations of quivers, geometry and representation theory.The investigator will study the rings of semi-invariants of quivers and the combinatorial invariants they define. Special attention will be paid to the cone of weights of such rings and its relation to representation theory. In the special case of triple flag quivers this amounts to studying the cone defined by Klyachko inequalities. The principal investigator will also study the generalized quivers associated to reductive groups and their semi-invariants as well as the products of homogeneous spaces with finitely many orbits.Quivers are just oriented graphs. Their representations provide a convenient coding scheme allowing to study classification of objects arising in various areas of mathematics. The classification of matrices by their ranks and Jordan classificaton of endomorphisms of a vector space are the simplest examples. The more complicated ones include representations of classical groups and their generalizations to infinite dimensional algebras. Studying such classification problems, and conditions under which they can be explicitly solved is central in mathematical research. The investigator and his collaborators found that new interesting results can be obtained by using methods of invariant theory which were neglected before.
摘要:这个建议是关于箭图的表示,几何和表示理论之间的相互作用。研究者将研究箭图的半不变量环和它们定义的组合不变量。特别注意将支付给锥的重量等环和它的关系表示论。 在特殊情况下的三重旗颤抖这相当于研究锥定义的Klyachko不等式。 主要研究者还将研究与约化群及其半不变量相关的广义箭图,以及具有多个轨道的齐次空间的乘积。箭图只是定向图。 它们的表示提供了一种方便的编码方案,允许研究各个数学领域中出现的对象的分类。 矩阵的秩分类和向量空间的自同态的Jordan分类是最简单的例子。 更复杂的包括经典群的表示和它们对无限维代数的推广。 研究这样的分类问题,以及它们可以明确解决的条件是数学研究的核心。 研究者和他的合作者发现,通过使用以前被忽视的不变理论方法可以获得新的有趣结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jerzy Weyman其他文献
Syzygies of Determinantal Thickenings and Representations of the General Linear Lie Superalgebra
- DOI:
10.1007/s40306-018-0282-z - 发表时间:
2018-08-04 - 期刊:
- 影响因子:0.300
- 作者:
Claudiu Raicu;Jerzy Weyman - 通讯作者:
Jerzy Weyman
Semi-invariants of canonical algebras
- DOI:
10.1007/s002290050208 - 发表时间:
1999-11-01 - 期刊:
- 影响因子:0.600
- 作者:
Andrzej Skowroński;Jerzy Weyman - 通讯作者:
Jerzy Weyman
An ADE correspondence for grade three perfect ideals
三年级完美理想的 ADE 对应
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Lorenzo Guerrieri;Xianglong Ni;Jerzy Weyman - 通讯作者:
Jerzy Weyman
Bernstein-Gelfand-Gelfand meets geometric complexity theory: resolving the 2 x 2 permanents of a 2 x n matrix
Bernstein-Gelfand-Gelfand 满足几何复杂性理论:解析 2 x n 矩阵的 2 x 2 常量
- DOI:
10.1016/j.jalgebra.2007.04.018 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Fulvio Gesmundo;Hang Huang;Hal Schenck;Jerzy Weyman - 通讯作者:
Jerzy Weyman
Category localization semantics for specification refinements
- DOI:
10.1007/s10472-007-9055-4 - 发表时间:
2007-05-30 - 期刊:
- 影响因子:1.000
- 作者:
Jerzy Tomasik;Jerzy Weyman - 通讯作者:
Jerzy Weyman
Jerzy Weyman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jerzy Weyman', 18)}}的其他基金
Applications of Representation Theory in Commutative Algebra
表示论在交换代数中的应用
- 批准号:
1802067 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Continuing Grant
Free Resolutions and Representation Theory
自由决议和表示理论
- 批准号:
1400740 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: AGNES - Algebraic Geometry Northeastern Series
合作研究:AGNES - 代数几何东北系列
- 批准号:
1064409 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Continuing Grant
Geometric aspects of quiver representations
箭袋表示的几何方面
- 批准号:
0600229 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Continuing Grant
Applications of Quiver Representations to Algebra and Geometry
Quiver 表示在代数和几何中的应用
- 批准号:
0300064 - 财政年份:2003
- 资助金额:
-- - 项目类别:
Continuing Grant
Varieties Related to Algebraic Group Actions
与代数群动作相关的种类
- 批准号:
9700884 - 财政年份:1997
- 资助金额:
-- - 项目类别:
Standard Grant
Mathematical Sciences: Research in Commutative Algebra
数学科学:交换代数研究
- 批准号:
9102432 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing grant
Mathematical Sciences: Research in Commutative Algebra and Invariant Theory
数学科学:交换代数和不变量理论研究
- 批准号:
8903466 - 财政年份:1989
- 资助金额:
-- - 项目类别:
Continuing grant
相似海外基金
Scene Processing With Machine Learnable and Semantically Parametrized Representations RENEWAL
使用机器学习和语义参数化表示进行场景处理 RENEWAL
- 批准号:
MR/Y033884/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Fellowship
P-adic Variation of Modular Galois Representations
模伽罗瓦表示的 P 进变分
- 批准号:
2401384 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Higgs bundles and Anosov representations
职业:希格斯丛集和阿诺索夫表示
- 批准号:
2337451 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Native, non-native or artificial phonetic content for pronunciation education: representations and perception in the case of L2 French
用于发音教育的母语、非母语或人工语音内容:以法语 L2 为例的表征和感知
- 批准号:
24K00093 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unlocking the secrets of modular representations
解开模块化表示的秘密
- 批准号:
FL230100256 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Australian Laureate Fellowships
Career: Learning Multimodal Representations of the Physical World
职业:学习物理世界的多模态表示
- 批准号:
2339071 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Collaborative Research: Conference: Texas-Oklahoma Representations and Automorphic forms (TORA)
合作研究:会议:德克萨斯州-俄克拉荷马州表示和自同构形式 (TORA)
- 批准号:
2347096 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Parahoric Character Sheaves and Representations of p-Adic Groups
隐喻特征束和 p-Adic 群的表示
- 批准号:
2401114 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Multiple Representations of Learning in Dynamics and Control: Exploring the Synergy of Low-Cost Portable Lab Equipment, Virtual Labs, and AI within Student Learning Activities
动力学和控制中学习的多重表示:探索低成本便携式实验室设备、虚拟实验室和人工智能在学生学习活动中的协同作用
- 批准号:
2336998 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant