Probability Measures on Vector Spaces: Theory and Applications
向量空间的概率测度:理论与应用
基本信息
- 批准号:0071700
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Applications of probability in modern science frequently involve the study of random quantities with many components (dimensions), or perhaps even of a geometric nature. Thus they require probability estimates and limit theorems which are applicable to random sets, or which are dimension free (hence, in essence, infinite dimensional). A major theme in the investigator's previous work, and in much of the current research, addresses both of these issues in a variety of settings. As a first example consider the link between small ball probabilities and metric entropy problems, which showed certain probability estimates are equivalent to problems in approximation theory. This link led to the solution of a long standing problem in approximation theory, and portions of the proposed research involve important unsolved analogues of this problem. Another example is the study of the Gibbs conditioning principle of statistical mechanics for statistics with infinitely many components. To begin to handle this type of problem one needs non-logarithmic estimates of large deviation probabilities which are dimension free. These estimates depend critically on dominating points and a suitable representation formula for the probabilities. A variety of conditional limit theorems are to be considered. Additional problems exhibiting these general features are also proposed, and connect with classical geometry, analysis, and statistics. This work includes further non-logarithmic large deviation probabilities for partial sums of independent random vectors, an investigation of dominating points in a more general setting, and the application of these results to conditional limit theorems for infinite dimensional statistics. Limit sets for random samples of stochastic processes, as well as related coverage problems will be examined, and a primary focus will be to further examine the link between small ball probabilities and non-classical functional laws of the iterated logarithm applicable to occupation measures. Problems concerning vector valued partial sums, cluster sets, small ball probabilities, self-normalized partial sums, and limit theorems for convex hulls of Brownian motion paths are also to be considered.
概率论在现代科学中的应用经常涉及对具有许多组成部分(维度)的随机数量的研究,甚至可能涉及几何性质。因此,它们需要概率估计和极限定理,这些定理适用于随机集合,或者是无维的(因此,本质上是无限维的)。在研究者之前的工作和目前的研究中,一个主要的主题是在各种环境中解决这两个问题。作为第一个例子,考虑小球概率和度量熵问题之间的联系,这表明某些概率估计等同于近似理论中的问题。这一联系导致了近似理论中一个长期存在的问题的解决,而部分提出的研究涉及到这个问题的重要的未解决的类似问题。另一个例子是研究具有无限多分量的统计力学的吉布斯条件反射原理。为了开始处理这类问题,需要对无维的大偏差概率进行非对数估计。这些估计主要取决于主导点和合适的概率表示公式。各种条件极限定理将被考虑。还提出了具有这些一般特征的附加问题,并与经典几何、分析和统计相联系。这项工作包括独立随机向量部分和的非对数大偏差概率,更一般设置下支配点的研究,以及将这些结果应用于无限维统计的条件极限定理。将审查随机过程的随机样本的极限集以及相关的覆盖问题,主要重点将是进一步审查小球概率与适用于职业措施的迭代对数的非经典泛函律之间的联系。有关向量值部分和、聚类集、小球概率、自归一化部分和和布朗运动路径凸壳极限定理的问题也将被考虑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
James Kuelbs其他文献
Weak Convergence Results for Multiple Generations of a Branching Process
- DOI:
10.1007/s10959-009-0266-y - 发表时间:
2009-12-18 - 期刊:
- 影响因子:0.600
- 作者:
James Kuelbs;Anand N. Vidyashankar - 通讯作者:
Anand N. Vidyashankar
Limits for Partial Maxima of Gaussian Random Vectors
- DOI:
10.1007/s10959-019-00892-2 - 发表时间:
2019-03-16 - 期刊:
- 影响因子:0.600
- 作者:
James Kuelbs;Joel Zinn - 通讯作者:
Joel Zinn
Empirical Quantile Central Limit Theorems for Some Self-Similar Processes
- DOI:
10.1007/s10959-013-0511-2 - 发表时间:
2013-09-04 - 期刊:
- 影响因子:0.600
- 作者:
James Kuelbs;Joel Zinn - 通讯作者:
Joel Zinn
Small ball estimates for Brownian motion and the Brownian sheet
- DOI:
10.1007/bf01066717 - 发表时间:
1993-07-01 - 期刊:
- 影响因子:0.600
- 作者:
James Kuelbs;Wenbo V. Li - 通讯作者:
Wenbo V. Li
James Kuelbs的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('James Kuelbs', 18)}}的其他基金
Summer Internships in Probability and Stochastic Processes
概率和随机过程暑期实习
- 批准号:
0098605 - 财政年份:2001
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Probability Measures of Vector Spaces; Basic Results and Applications
向量空间的概率测度;
- 批准号:
9703740 - 财政年份:1997
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probability Measures on Vector Spaces; Basic Results and Application
数学科学:向量空间上的概率测度;
- 批准号:
9400024 - 财政年份:1994
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probability Measures on Vector Spaces: Basic Results and Application
数学科学:向量空间上的概率测度:基本结果和应用
- 批准号:
9024961 - 财政年份:1991
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probability Measures on Vector Spaces; Basic Results and Applications
数学科学:向量空间上的概率测度;
- 批准号:
8521586 - 财政年份:1986
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probability Measures on Vector Spaces; Basic Results and Applications
数学科学:向量空间上的概率测度;
- 批准号:
8219742 - 财政年份:1983
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Probability Measures on Vector Spaces: Basic Results and Applications
向量空间的概率测度:基本结果和应用
- 批准号:
8001596 - 财政年份:1980
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Travel to Attend: Conference on Vector Space Measures And Applications, Dublin, Ireland, 06/26-07/02/77
前往参加:矢量空间测量和应用会议,爱尔兰都柏林,06/26-07/02/77
- 批准号:
7712803 - 财政年份:1977
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
Probability Measures on Topological Vector Spaces; Basic Results and Applications
拓扑向量空间的概率测度;
- 批准号:
7701098 - 财政年份:1977
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Probability Measures on Topological Vector Spaces; Basic Results and Applications
拓扑向量空间的概率测度;
- 批准号:
7505855 - 财政年份:1975
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
相似海外基金
Probability Measures of Vector Spaces; Basic Results and Applications
向量空间的概率测度;
- 批准号:
9703740 - 财政年份:1997
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probability Measures on Vector Spaces; Basic Results and Application
数学科学:向量空间上的概率测度;
- 批准号:
9400024 - 财政年份:1994
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probability Measures on Vector Spaces: Basic Results and Application
数学科学:向量空间上的概率测度:基本结果和应用
- 批准号:
9024961 - 财政年份:1991
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probability Measures on Vector Spaces; Basic Results and Applications
数学科学:向量空间上的概率测度;
- 批准号:
8521586 - 财政年份:1986
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Probability Measures on Vector Spaces; Basic Results and Applications
数学科学:向量空间上的概率测度;
- 批准号:
8219742 - 财政年份:1983
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Probability Measures on Vector Spaces: Basic Results and Applications
向量空间的概率测度:基本结果和应用
- 批准号:
8001596 - 财政年份:1980
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Probability Measures on Topological Vector Spaces; Basic Results and Applications
拓扑向量空间的概率测度;
- 批准号:
7701098 - 财政年份:1977
- 资助金额:
$ 9万 - 项目类别:
Continuing Grant
Probability Measures on Topological Vector Spaces; Basic Results and Applications
拓扑向量空间的概率测度;
- 批准号:
7505855 - 财政年份:1975
- 资助金额:
$ 9万 - 项目类别:
Standard Grant
PROBABILITY MEASURES IN TOPOLOGICAL VECTOR SPACES, BASIC RESULTS AND APPLICATIONS
拓扑向量空间中的概率测度、基本结果及应用
- 批准号:
7354012 - 财政年份:1973
- 资助金额:
$ 9万 - 项目类别: