Scalable Multilevel Algorithms in Computational Sciences
计算科学中的可扩展多级算法
基本信息
- 批准号:0072112
- 负责人:
- 金额:$ 44.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Solvers for Partial Differential Equations (PDEs) are the backbone of much of scientific computing. In particular, they are the basis of Computational Fluid Dynamics (CFD), the modeling of liquid and gas flows. This project studies new, efficient methods for solving PDEs and implements those methods on modern high-performance parallel computers. These solvers are useful in areas other than their original CFD home - in particular, surprising applications to diverse areas such as image restoration and VLSI placement will be studied as well.Technically, this project will investigate efficient algebraic multiscale algorithms for elliptic and non-elliptic PDE and CFD problems on arbitrary unstructured meshes which are suitable for distributed and shared memory parallel computing architectures. In addition, it will study how these algorithms can be extended to other large scale non-PDE problems, including image restoration and VLSI placement problems. Three aspects of these multiscale algorithms will be emphasized in this work: (1) Issues arising from making these algorithms more algebraic (for ease of use) including robustness to anisotropy, jumps and oscillations in coefficients, homogenization, etc. (2) Extension of these algorithms from their normal elliptic setting to non-elliptic and more generally non-PDE, graph-based settings. (3) Performance on modern high performance computer architectures with particular attention paid to communication and cache memory latency. Particular attention will be placed on algorithms appropriate for solving discretization matrices arising from a variety of large scale scientific computing problems such as CFD for advection dominated problems, VLSI placement an image processing. The non-elliptic behavior of these practical problems renders the known multilevel theory inadequate and serves to motivate a balanced effort consisting of algorithmic development, theoretical analysis, and practical application.
偏微分方程(PDE)求解器是许多科学计算的支柱。特别是,它们是计算流体动力学(CFD)的基础,液体和气体流动的建模。该项目研究新的,有效的方法来解决偏微分方程,并在现代高性能并行计算机上实现这些方法。这些求解器在其最初的CFD应用领域之外的其他领域也很有用-特别是,还将研究图像恢复和超大规模集成电路布局等不同领域的令人惊讶的应用。从技术上讲,该项目将研究适用于分布式和共享内存并行计算架构的任意非结构化网格上的椭圆和非椭圆偏微分方程和CFD问题的高效代数多尺度算法。此外,本论文亦将研究如何将这些演算法延伸至其他大规模非偏微分方程问题,包括影像复原及超大型积体电路布局问题。这些多尺度算法的三个方面将在这项工作中强调:(1)所产生的问题,使这些算法更代数(便于使用),包括各向异性的鲁棒性,跳跃和振荡系数,均匀化等(2)这些算法的扩展,从正常的椭圆设置非椭圆和更一般的非偏微分方程,基于图形的设置。(3)在现代高性能计算机体系结构上的性能,特别关注通信和高速缓存延迟。特别注意将放在适当的算法,解决离散化矩阵所产生的各种大规模的科学计算问题,如计算流体动力学的平流为主的问题,超大规模集成电路布局的图像处理。这些实际问题的非椭圆行为使得已知的多层次理论不足,并有助于激发平衡的努力,包括算法开发,理论分析和实际应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tony Chan其他文献
Weekly assigned reading and examinations are associated with improved first time pass rates on the American Board of Surgery (ABS) qualifying and certifying examinations
- DOI:
10.1016/j.jsurg.2008.01.020 - 发表时间:
2008-01-01 - 期刊:
- 影响因子:
- 作者:
Christian de Virgilio;Tony Chan - 通讯作者:
Tony Chan
Exercise induced collapse: insulin shock
运动诱发的虚脱:胰岛素休克
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Tony Chan - 通讯作者:
Tony Chan
A Miniaturized and Integrated Plastic Thermal Chemical Reactor for Genetic Analysis
用于遗传分析的小型化集成塑料热化学反应器
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:0
- 作者:
Huinan Yu;P. Sethu;Tony Chan;N. Kroutchinina;Jocquese Blackwell;C. Mastrangelo;P. Grodzinski - 通讯作者:
P. Grodzinski
Erratum to: A Novel Sparsity Reconstruction Method from Poisson Data for 3D Bioluminescence Tomography
- DOI:
10.1007/s10915-011-9544-9 - 发表时间:
2011-09-28 - 期刊:
- 影响因子:3.300
- 作者:
Xiaoqun Zhang;Yujie Lu;Tony Chan - 通讯作者:
Tony Chan
Tony Chan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tony Chan', 18)}}的其他基金
Variational PDE Models and Computational Methods in Image Processing
图像处理中的变分偏微分方程模型和计算方法
- 批准号:
9973341 - 财政年份:2000
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
U.S.- France Cooperative Research: Multiresolution and Multiscale Algorithms on Unstructured Meshes for Computational Sciences
美法合作研究:计算科学非结构化网格的多分辨率和多尺度算法
- 批准号:
0072863 - 财政年份:2000
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
U.S.-Spain Cooperative Research: Total Variation Methods in Image Processing
美国-西班牙合作研究:图像处理中的全变分方法
- 批准号:
9602089 - 财政年份:1997
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
Parallel Multilevel PDE Solvers on Unstructured Grids
非结构化网格上的并行多级 PDE 求解器
- 批准号:
9720257 - 财政年份:1997
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant
Mathematical Sciences: Computational Mathematics Issues in Nonlinear Diffusion Modules in Image Processing
数学科学:图像处理中非线性扩散模块的计算数学问题
- 批准号:
9626755 - 财政年份:1996
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant
U.S.-Bulgaria Research Project on Block Factorization Preconditioners
美国-保加利亚分块分解预处理器研究项目
- 批准号:
9506184 - 财政年份:1995
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
Mathematical Sciences: Householder Symposium XII on Numerical Algebra
数学科学:第十二届数值代数家庭研讨会
- 批准号:
9225092 - 财政年份:1993
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
U.S.-Bulgaria Research on Iterative Methods for Large-Scale Discretization Problems
美国-保加利亚大规模离散化问题迭代方法研究
- 批准号:
9220287 - 财政年份:1993
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
Parallel Multiscale Iterative Methods
并行多尺度迭代方法
- 批准号:
9201266 - 财政年份:1992
- 资助金额:
$ 44.61万 - 项目类别:
Continuing Grant
Parallel Multilevel Elliptic Preconditioners
并行多级椭圆预处理器
- 批准号:
9003002 - 财政年份:1990
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
相似国自然基金
基于Multilevel Model的雷公藤多苷致育龄女性闭经预测模型研究
- 批准号:81503449
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multilevel Algorithms for Tensor and Network Problems
张量和网络问题的多级算法
- 批准号:
311947-2013 - 财政年份:2016
- 资助金额:
$ 44.61万 - 项目类别:
Discovery Grants Program - Individual
Multilevel Algorithms for Tensor and Network Problems
张量和网络问题的多级算法
- 批准号:
311947-2013 - 财政年份:2015
- 资助金额:
$ 44.61万 - 项目类别:
Discovery Grants Program - Individual
Parallel fast multilevel co-clustering algorithms
并行快速多级共聚类算法
- 批准号:
464193-2014 - 财政年份:2014
- 资助金额:
$ 44.61万 - 项目类别:
University Undergraduate Student Research Awards
Multilevel Algorithms for Tensor and Network Problems
张量和网络问题的多级算法
- 批准号:
311947-2013 - 财政年份:2014
- 资助金额:
$ 44.61万 - 项目类别:
Discovery Grants Program - Individual
Multilevel Algorithms for Tensor and Network Problems
张量和网络问题的多级算法
- 批准号:
311947-2013 - 财政年份:2013
- 资助金额:
$ 44.61万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms
合作研究:以拉普拉斯为中心的泊松求解器和多级求和算法
- 批准号:
0830578 - 财政年份:2008
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
Constructive Quantization and Multilevel Algorithms for Quadrature of SDEs
SDE 求积的构造量化和多级算法
- 批准号:
79644002 - 财政年份:2008
- 资助金额:
$ 44.61万 - 项目类别:
Priority Programmes
Collaborative Research: Laplacian-Centered Poisson Solvers and Multilevel Summation Algorithms
合作研究:以拉普拉斯为中心的泊松求解器和多级求和算法
- 批准号:
0830582 - 财政年份:2008
- 资助金额:
$ 44.61万 - 项目类别:
Standard Grant
Development of Multilevel Monte Carlo Algorithms for Mathematical Finance
数学金融多级蒙特卡罗算法的开发
- 批准号:
EP/E031455/1 - 财政年份:2007
- 资助金额:
$ 44.61万 - 项目类别:
Fellowship
Fast and reliable multilevel algorithms in a virtual orthopaedic surgery lab (C05)
虚拟骨科手术实验室中快速可靠的多级算法 (C05)
- 批准号:
37986585 - 财政年份:2007
- 资助金额:
$ 44.61万 - 项目类别:
Collaborative Research Centres