New Numerical Methods and Analysis for Navier Stokes Equations Involving Interfaces and Simulation of Electro-Migration of Voids

涉及界面的纳维斯托克斯方程的新数值方法和分析以及空洞电迁移的模拟

基本信息

  • 批准号:
    0073403
  • 负责人:
  • 金额:
    $ 9.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

This proposal is for the continuation of the PI's research toward thedevelopment, implementation, and application of efficient numerical methodsfor interface problems especially with moving interfaces and/or freeboundaries. Specific projects include development of the immersed interfacemethod for the Navier Stokes equations modeling incompressible viscous twophase flow with fixed or moving interfaces. Related to this topic, someimportant projects include development of new projection and/or gaugemethods so that the second order accuracy can be preserved even with thepresence of interfaces; second order elliptic solvers that can satisfy themaximum principle for interface problems in two and three dimensions; thefinite element methods using Cartesian and/or adaptive Cartesian grids forinterface problems. Another application which will be studied in depth isthe simulation of electro-migration of voids in integrated circuits withthe presence of grain boundaries.This proposal is about developing efficient (fast, accurate, and in realtime) methods to simulate some important moving interface/free boundary problems. Applications include the simulation of the interface between water and oil in petroleum industry; simulation of contaminated bubbles in water for environmental science; simulation of crystal growth of pattern formulation in material science; simulation of cell deformation and motion of biofilm in medical and biology sciences; and simulation of electro-migration of voids in an integrated circuit in semi-conductor industry. Over the years, we have developed advanced methods for solving these interface problems and we believe we are the leaders in this area. Therefore we are very confident in the success of the proposal and canmaintain the edge in this area over other countries. Economically, the success of this proposal can save millions of dollars that areneeded to carry out real experiments.
这项建议是为了继续PI的研究,开发、实施和应用有效的数值方法来解决界面问题,特别是具有移动界面和/或自由边界的问题。具体项目包括开发用于Navier-Stokes方程的浸没界面方法,模拟具有固定或移动界面的不可压缩粘性两相流。与此相关的一些重要项目包括发展新的投影和/或规范方法,以便即使在有界面的情况下也能保持二阶精度;能够满足二维和三维界面问题极大值原理的二阶椭圆求解器;使用笛卡尔网格和/或自适应笛卡尔网格来求解界面问题的有限元方法。另一个将被深入研究的应用是模拟存在晶界的集成电路中的空穴的电迁移。这项提议是为了开发有效的(快速、准确和实时的)方法来模拟一些重要的移动界面/自由边界问题。在石油工业中的应用包括模拟石油工业中的水和油的界面;在环境科学中模拟水中受污染的气泡;在材料科学中模拟晶体生长的图案式;在医学和生物科学中模拟细胞变形和生物膜的运动;在半导体工业中模拟集成电路中空穴的电迁移。多年来,我们开发了解决这些界面问题的先进方法,我们相信我们在这一领域处于领先地位。因此,我们对这一提议的成功非常有信心,并能够保持这一领域相对于其他国家的优势。在经济上,这一提议的成功可以节省进行真正实验所需的数百万美元。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zhilin Li其他文献

Recent perspectives of cerebral palsy in children.
儿童脑瘫的最新观点。
  • DOI:
    10.23736/s0026-4946.17.04880-0
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Qiu;Zhongxiu Yang;Zhilin Li
  • 通讯作者:
    Zhilin Li
Biomass-derived mesopore-dominant porous carbon monoliths with large specific surface area and high defect density as high performance electrode materials for Li-ion batteries and supercapacitors
生物质衍生的介孔为主的多孔碳整体材料具有大比表面积和高缺陷密度,可作为锂离子电池和超级电容器的高性能电极材料
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Jin Niu;Rong Shao;Jingjing Liang;Meiling Dou;Zhilin Li;Yaqin Huang;Feng Wang
  • 通讯作者:
    Feng Wang
An additive Schwarz preconditioner for the mortar-type rotated Q1 FEM for elliptic problems with discontinuous coeficients
用于解决具有不连续系数的椭圆问题的迫击炮型旋转 Q1 有限元的加性 Schwarz 预处理器
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Wei Xu;Feng Wang;Zhilin Li;Jinru Chen
  • 通讯作者:
    Jinru Chen
Electrodeposition mechanism of quaternary compounds Cu2ZnSnS4: Effect of the additives
四元化合物Cu2ZnSnS4的电沉积机理:添加剂的影响
  • DOI:
    10.1016/j.apsusc.2017.07.119
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Aiyue Tang;Zhilin Li;Feng Wang;Meiling Dou;Jingjun Liu;Jing Ji;Ye Song
  • 通讯作者:
    Ye Song
Theoretical models of the accuracy of digital terrain models: an evaluation and some observations
数字地形模型精度的理论模型:评估和一些观察
  • DOI:
    10.1111/j.1477-9730.1993.tb00775.x
  • 发表时间:
    1993
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Zhilin Li
  • 通讯作者:
    Zhilin Li

Zhilin Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zhilin Li', 18)}}的其他基金

Novel Ideas and Analysis for Interface and Fluid-Structure Interaction Problems and Applications
界面和流固耦合问题的新思路和分析及应用
  • 批准号:
    1522768
  • 财政年份:
    2015
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Standard Grant
Workshop on Fluid-Structure Interaction Problems
流固耦合问题研讨会
  • 批准号:
    1111612
  • 财政年份:
    2011
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Standard Grant
Augmented methods for Navier Stokes equations involving free boundary and moving interface and applications
涉及自由边界和移动界面的纳维斯托克斯方程的增强方法及应用
  • 批准号:
    0911434
  • 财政年份:
    2009
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Standard Grant
Collaborative Research: Hybrid Finite Element Level-Set Methods for Stress-Driven Interface Dynamics
合作研究:应力驱动界面动力学的混合有限元水平集方法
  • 批准号:
    0412654
  • 财政年份:
    2004
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Standard Grant

相似海外基金

Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Developing a New Class of Arbitrary-Resolution Numerical Methods with Applications to Geoscience
开发一类应用于地球科学的新型任意分辨率数值方法
  • 批准号:
    559297-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Early-Career Participant Support: The 13th International Conference on Numerical Methods in Industrial Forming Processes (NUMIFORM); Portsmouth, New Hampshire; June 23-27, 2019
早期职业参与者支持:第 13 届工业成形过程数值方法国际会议 (NUMIFORM);
  • 批准号:
    1916600
  • 财政年份:
    2019
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Standard Grant
Development of new efficient structure-preserving numerical methods based on model reductions
基于模型简化的新型高效结构保持数值方法的开发
  • 批准号:
    17H02826
  • 财政年份:
    2017
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
  • 批准号:
    454127-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Postdoctoral Fellowships
Development of estimation methods of physical quantities of new snow considering cloud microphysical processes using numerical meteorological model
利用数值气象模型建立考虑云微物理过程的新雪物理量估算方法
  • 批准号:
    16K01340
  • 财政年份:
    2016
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New Developments in Geometric and Multiscale Numerical Methods
几何和多尺度数值方法的新进展
  • 批准号:
    1522337
  • 财政年份:
    2015
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Standard Grant
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
  • 批准号:
    454127-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Postdoctoral Fellowships
New Numerical Methods for Molecular Integrals in Local Electron Correlated Wavefunction Theory
局域电子相关波函数理论中分子积分的新数值方法
  • 批准号:
    454127-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Postdoctoral Fellowships
New High-Accurate Numerical Methods for Inverse Problems by the Direct Computations of Integral Equations of the First Kind
第一类积分方程直接计算反问题的高精度数值新方法
  • 批准号:
    26400198
  • 财政年份:
    2014
  • 资助金额:
    $ 9.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了