Ultralevel Assembly of Micron-scale Components

微米级元件的超水平组装

基本信息

  • 批准号:
    0073949
  • 负责人:
  • 金额:
    $ 32.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2000
  • 资助国家:
    美国
  • 起止时间:
    2000-06-15 至 2004-05-31
  • 项目状态:
    已结题

项目摘要

Modern mechanical assembly techniques are currently used to manufacture integrated hybrid electronic structures and composite materials. Limitations such as the trade-off between precision and speed in these systems and the inadvertent development of static charge on dielectric surfaces limit the feasible component size to hundreds of microns. Faster motion results in misplacement due to increased vibration. Static charge causes parts to be moved from the desired location in an uncontrolled manner. Self-assembly techniques have been used to assemble composite materials on the micron or nanometer scale, but are limited to close-packed structures. The current drive in the microelectronics industry toward increased integration and decreasing component size, and the development of micron scale composite materials require new assembly techniques. This research project seeks to develop techniques for such ultralevel assembly. Ultralevel assembly refers to the surface mount of discrete micron and submicron scale components directly on active substrates such as silicon chips. The proposed method is a hybrid assembly process, utilizing electrostatic and electrophoretic forces in conjunction with light pressure to guide, or even "fly" components into position. This sort of hybrid assembly process is also promising for the development of composite materials made up of micron scale particles arranged in non-close-packed arrays. The proposed method for utilizing electrostatic forces to aid in assembly is based on controlling the local surface charge density on the substrate and component. A corona discharge device will be used to deposit a uniform surface charge on the component, and a charge of opposite polarity onto the substrate target area. The Coulombic force between the component and the oppositely charged target area will attract the component to the target. A corona discharge device utilizes a point electrode at high voltage over a planar ground to cause local ionization of the surrounding gas. The ionized gas molecules are accelerated toward the ground, and deposited on a dielectric surface. Electrophoretic positioning in an electrolyte solution will be used to place parts smaller than 10 micrometers in diameter. The surfaces of the components will adopt a charge in an electrolyte due to the specific absorption of potential determining ions. Small patterned electrodes on the substrate surface will be used to create an electric field and attract the charged parts to the substrate surface. The accuracy of the proposed process will be dictated by the highly controlled Coulombic forces and radiation pressure and not by the positioning errors and vibration of the mechanical placement system. The simultaneous use of these forces will allow the efficient assembly of discreet components and will introduce the exciting possibility of forming new composite materials on the micron scale. %%%Electrophoretic deposition of particulate coatings with no control over microstructure has been used industrially for many years. This research project seeks to use this technique to place micro-components in a specific location on a substrate surface. The use of a focused laser beam in addition to these Coulombic forces will allow more accurate control over the position and orientation of the component. The application of such non-contact techniques offers the potential for vast improvements over traditional mechanical assembly. This technique might have broad impacts in the microelectronics industry.***
现代机械装配技术目前被用于制造集成的混合电子结构和复合材料。这些系统的精度和速度之间的权衡,以及介质表面不经意间产生的静电等限制,将可行的元件尺寸限制在数百微米。由于振动增加,较快的运动会导致错位。静电会导致零件以不受控制的方式从所需位置移动。自组装技术已被用于组装微米或纳米级的复合材料,但仅限于紧密堆积的结构。当前微电子工业朝着提高集成度和减小元件尺寸的方向发展,以及微米级复合材料的发展需要新的组装技术。这项研究项目旨在开发这种超水平组装的技术。超水平组装是指将离散的微米和亚微米级组件直接安装在硅片等有源基板上。所提出的方法是一种混合组装过程,利用静电和电泳力与光压力相结合来引导,甚至“飞行”到适当的位置。这种混合组装工艺也有望发展由微米级颗粒以非紧密排列的阵列组成的复合材料。所提出的利用静电力辅助组装的方法是基于控制基板和元件上的局部表面电荷密度。电晕放电装置将被用来在元件上沉积均匀的表面电荷,并在衬底靶区沉积相反的电荷。组件和相反带电的靶区之间的库仑力会将组件吸引到目标上。电晕放电装置利用平面接地上高电压的点电极来引起周围气体的局部电离。电离气体分子加速朝向地面,并沉积在介电表面。在电解液中的电泳定位将用于放置直径小于10微米的部件。由于潜在决定离子的特殊吸收,组件的表面将在电解液中带电。基板表面的小图案电极将被用来产生电场,并将带电部件吸引到基板表面。所提出的工艺的精度将由高度可控的库仑力和辐射压力决定,而不是由机械贴装系统的定位误差和振动决定。同时使用这些力将允许离散组件的有效组装,并将引入在微米级形成新复合材料的令人兴奋的可能性。不控制微观结构的颗粒涂层的%电泳法已在工业上使用多年。该研究项目旨在利用这一技术将微元件放置在基片表面的特定位置。除了这些库仑力之外,使用聚焦的激光光束将允许更精确地控制部件的位置和方向。这种非接触技术的应用为传统机械装配提供了巨大的改进潜力。这项技术可能会在微电子行业产生广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Cima其他文献

Microdosing of a kappa opioid receptor agonist within proximal nucleus accumbens shell microstructures revealing opposing behavioral outcomes
  • DOI:
    10.1016/j.neuroscience.2024.10.047
  • 发表时间:
    2024-12-17
  • 期刊:
  • 影响因子:
  • 作者:
    Erin B. Rousseau;Hannah D. Jackson;Suman Guha;Sydney S. Sherman;Michael Cima;Elena H. Chartoff
  • 通讯作者:
    Elena H. Chartoff
Insights into large carnivore populations in Uganda: A participatory survey of lions, leopards, and hyenas using spatial capture-recapture
乌干达大型食肉动物种群的见解:利用空间捕获-再捕获法对狮子、豹子和鬣狗进行的参与式调查
  • DOI:
    10.1016/j.gecco.2024.e03312
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    3.400
  • 作者:
    Alexander R. Braczkowski;Nicholas Elliot;Aggrey Rwetsiba;Tutilo Mudumba;Arjun M. Gopalaswamy;Christopher J. O’Bryan;Anna Crysell;Duan Biggs;Hamish McCallum;Michael Cima;Silvan Musobozi;Lilian Namukose;Sophia Jingo;Peter Luhonda;Ralph Schenk;Patrick Okello;Innocent Komakech;Jimmy Kisembo;Keren S. Pereira;Gilbert Drileyo;Luke Gibson
  • 通讯作者:
    Luke Gibson

Michael Cima的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Cima', 18)}}的其他基金

SGER: Development of NMR relaxation theory for colloidal aggregates of superparamagnetic nanoparticles
SGER:超顺磁性纳米粒子胶体聚集体的 NMR 弛豫理论的发展
  • 批准号:
    0746264
  • 财政年份:
    2007
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Standard Grant
Ceramic Superconductors Produced By Advanced Ceramics Processing (Materials Research)
通过先进陶瓷加工生产的陶瓷超导体(材料研究)
  • 批准号:
    8716731
  • 财政年份:
    1987
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Standard Grant

相似国自然基金

晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
  • 批准号:
    21171046
  • 批准年份:
    2011
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目

相似海外基金

Renewal application: How do ecological trade-offs drive ectomycorrhizal fungal community assembly? Fine- scale processes with large-scale implications
更新应用:生态权衡如何驱动外生菌根真菌群落组装?
  • 批准号:
    MR/Y011503/1
  • 财政年份:
    2025
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Fellowship
NSF PRFB FY23: Effects of bioengineering on community assembly and ecosystem functioning in a soil microbial community
NSF PRFB FY23:生物工程对土壤微生物群落的群落组装和生态系统功能的影响
  • 批准号:
    2305961
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Fellowship Award
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Standard Grant
Targeted ablation of cerebral atherosclerosis using supramolecular self-assembly
利用超分子自组装靶向消融脑动脉粥样硬化
  • 批准号:
    24K21101
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
BatCAT - Battery Cell Assembly Twin
BatCAT - 电池组装双胞胎
  • 批准号:
    10110057
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    EU-Funded
CAREER: Intensifying multi-material additive manufacturing using advective assembly
职业:使用平流装配强化多材料增材制造
  • 批准号:
    2339472
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Continuing Grant
Assembly of Novel Branched Ionic Polymers: Chirality Induction and 2D Heterostructures
新型支化离子聚合物的组装:手性感应和二维异质结构
  • 批准号:
    2404081
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Standard Grant
Deciphering and Directing Hierarchical Self-Assembly in Hybrid Chiral Films
破译和指导混合手性薄膜中的分层自组装
  • 批准号:
    2344586
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Standard Grant
Amplification of chiral recognition and discrimination among amino-acid-based nanoscale ions during assembly induced by electrostatic interaction
静电相互作用诱导组装过程中氨基酸纳米级离子之间手性识别和辨别的放大
  • 批准号:
    2309886
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Continuing Grant
Revolutionary Rotors: A Robotic Flywheel Assembly Line
革命性转子:机器人飞轮装配线
  • 批准号:
    10098069
  • 财政年份:
    2024
  • 资助金额:
    $ 32.98万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了