ITR: Collaborative Research: A New Generation of Scalable, Cost-Effective Regression Testing Techniques
ITR:协作研究:新一代可扩展、经济高效的回归测试技术
基本信息
- 批准号:0080898
- 负责人:
- 金额:$ 21.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-09-01 至 2004-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
CCR-0080898 PI: Sebastian Elbaum Univ. of Nebraska - Lincoln ITR:SW: Collaborative Research: A New Generation of Scalable, Cost-Effective Regression Testing Techniques Collaborating PI: Gregg Rothermel (CCR-0080900)This project is carried out in collaboration with Gregg Rothermel (CCR-0080900)of Oregon State University. Regression testing is an expensive process performed on modified software to provide confidence that modifications have not impaired its quality. To help with this process, previous research has considered various test-suite reuse techniques. Despite progress with these techniques, they remain limited along several dimensions. For example, they typically assume that test cases have equivalent costs, faults have equivalent severities, and fault likelihood is constant across portions of a program. These assumptions are unrealistic in practice, and limit the applicability and effectiveness of techniques. The proposed research will address these limitations. The research will provide: (1) comprehensive regression testing cost models that capture the necessary factors; (2) regression testing techniques that account for these factors; (3) more precise understanding of the effects these factors have on regression testability, program and test design, and software engineering practice; and(4) guidelines that help software engineers select and create cost-effective regression testing tools and processes. In addition to providing models, algorithms, and processes, the research includes a substantial empirical component, and will provide a publicly available base of empirical data about techniques and factors. Together, these contributions will support more efficient and effective regression testing, and improve the quality of software.
CCR-0080898 PI:塞巴斯蒂安·埃尔鲍姆大学。内布拉斯加州-林肯ITR:SW:协作研究:新一代可扩展、经济高效的回归测试技术协作PI:Gregg Rothermel(CCR-0080900)该项目是与俄勒冈州立大学的Gregg Rothermel(CCR-0080900)合作进行的。回归测试是在修改后的软件上执行的一种昂贵的过程,以确保修改不会损害其质量。为了帮助这一过程,以前的研究已经考虑了各种测试套件重用技术。尽管这些技术取得了进展,但它们在几个方面仍然有限。例如,他们通常假设测试用例具有相同的成本,错误具有相同的严重性,并且错误的可能性在程序的各个部分是恒定的。这些假设在实践中是不现实的,并限制了技术的适用性和有效性。拟议的研究将解决这些限制。这项研究将提供:(1)捕捉必要因素的全面回归测试成本模型;(2)考虑这些因素的回归测试技术;(3)更准确地了解这些因素对回归可测试性、程序和测试设计以及软件工程实践的影响;以及(4)帮助软件工程师选择和创建成本效益高的回归测试工具和过程的指导方针。除了提供模型、算法和过程之外,这项研究还包括大量的经验部分,并将提供关于技术和因素的公开的经验数据基础。总而言之,这些贡献将支持更高效和有效的回归测试,并提高软件质量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sebastian Elbaum其他文献
The SGSM framework: Enabling the specification and monitor synthesis of safe driving properties through scene graphs
- DOI:
10.1016/j.scico.2024.103252 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:
- 作者:
Trey Woodlief;Felipe Toledo;Sebastian Elbaum;Matthew B. Dwyer - 通讯作者:
Matthew B. Dwyer
Experimental program analysis
- DOI:
10.1016/j.infsof.2009.10.002 - 发表时间:
2010-04-01 - 期刊:
- 影响因子:
- 作者:
Joseph R. Ruthruff;Sebastian Elbaum;Gregg Rothermel - 通讯作者:
Gregg Rothermel
Sebastian Elbaum的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sebastian Elbaum', 18)}}的其他基金
Workshop on Software Engineering for Robotics Systems (SE4Robotics)
机器人系统软件工程研讨会(SE4Robotics)
- 批准号:
2332991 - 财政年份:2023
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
SHF: Medium: More Reliable Image Networks through Scene-based Specification, Neuro-symbolic Training, and Systematic Specification-driven Testing
SHF:中:通过基于场景的规范、神经符号训练和系统规范驱动测试实现更可靠的图像网络
- 批准号:
2312487 - 财政年份:2023
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
NRI: INT: COLLAB: Raining Drones: Mid-Air Release & Recovery of Atmospheric Sensing Systems
NRI:INT:协作:无人机下雨:空中发布
- 批准号:
1924777 - 财政年份:2019
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
SHF:Small: Holistic Analysis: integrating the semantics of the world and the code
SHF:Small:整体分析:整合世界语义和代码
- 批准号:
1853374 - 财政年份:2018
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
SHF:Small: Holistic Analysis: integrating the semantics of the world and the code
SHF:Small:整体分析:整合世界语义和代码
- 批准号:
1718040 - 财政年份:2017
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
SHF: Small:Testing in the Presence of Continuous Change
SHF:小:在持续变化的情况下进行测试
- 批准号:
1526652 - 财政年份:2015
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
SHF: Small: Solving the Search for Relevant Code in Large Repositories with Lightweight Specifications
SHF:小:用轻量级规范解决大型存储库中相关代码的搜索
- 批准号:
1218265 - 财政年份:2012
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
SHF: Small: T2T: A Framework for Amplifying Testing Resources
SHF:小型:T2T:扩大测试资源的框架
- 批准号:
0915526 - 财政年份:2009
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
CAREER: Leveraging Field Data to Test Highly-Configurable and Rapidly-Evolving Pervasive Systems
职业:利用现场数据测试高度可配置且快速发展的普及系统
- 批准号:
0347518 - 财政年份:2004
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
ITR: Collaborative Research: Dependable End-User Software
ITR:协作研究:可靠的最终用户软件
- 批准号:
0324861 - 财政年份:2003
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
相似海外基金
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
1404694 - 财政年份:2013
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
ITR-SCOTUS: A Resource for Collaborative Research in Speech Technology, Linguistics, Decision Processes, and the Law
ITR-SCOTUS:语音技术、语言学、决策过程和法律合作研究的资源
- 批准号:
1139735 - 财政年份:2011
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0963973 - 财政年份:2009
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
1018072 - 财政年份:2009
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
ITR Collaborative Research: A Reusable, Extensible, Optimizing Back End
ITR 协作研究:可重用、可扩展、优化的后端
- 批准号:
0838899 - 财政年份:2008
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
ITR Collaborative Research: Pervasively Secure Infrastructures (PSI): Integrating Smart Sensing, Data Mining, Pervasive Networking, and Community Computing
ITR 协作研究:普遍安全基础设施 (PSI):集成智能传感、数据挖掘、普遍网络和社区计算
- 批准号:
0833849 - 财政年份:2008
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
ITR/NGS: Collaborative Research: DDDAS: Data Dynamic Simulation for Disaster Management
ITR/NGS:合作研究:DDDAS:灾害管理数据动态模拟
- 批准号:
0808419 - 财政年份:2007
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
ITR: Collaborative Research - ASE - (sim+dmc): Image-based Biophysical Modeling: Scalable Registration and Inversion Algorithms and Distributed Computing
ITR:协作研究 - ASE - (sim dmc):基于图像的生物物理建模:可扩展配准和反演算法以及分布式计算
- 批准号:
0849301 - 财政年份:2007
- 资助金额:
$ 21.99万 - 项目类别:
Continuing Grant
ITR: Collaborative Research: Modeling and Display of Haptic Information for Enhanced Performance of Computer-Integrated Surgery
ITR:协作研究:触觉信息建模和显示,以提高计算机集成手术的性能
- 批准号:
0711040 - 财政年份:2007
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant
Collaborative Research: ITR-(ASE)-(dmc): Overcoming Fractionation Errors in Cancer Treatement Planning
合作研究:ITR-(ASE)-(dmc):克服癌症治疗计划中的分割错误
- 批准号:
0749671 - 财政年份:2006
- 资助金额:
$ 21.99万 - 项目类别:
Standard Grant