Collaborative Research: Combining Expert Judgments for Environmental Risk Analysis
合作研究:结合专家判断进行环境风险分析
基本信息
- 批准号:0084383
- 负责人:
- 金额:$ 8.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-08-15 至 2003-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This collaborative project with Gelman (0084368) and Hammitt (0084372) will develop and demonstrate improved methods for using expert judgment in environmental risk analysis. Risk-analytic models rely heavily on parameter estimates obtained using either informal or formal expert judgments. Such methods can be sensitive to two problems: biases in experts coding their knowledge into probability distributions (such as overconfidence bias), and the typically uncertain degree of dependence in judgments between experts (e.g., each expert's judgment combines his reading of a common scientific literature and his own experience and interpretations). The project will analyze the properties of two state-of-the-art methods for combining expert judgments: the "classical" method developed by Roger Cooke and colleagues at Delft University of Technology and the "copula" method developed by Robert Clemen and colleagues at Duke University. It will compare the methods mathematically and by evaluating their performance on synthetic and actual expert judgment data sets. In addition, the project will develop improved methods for combining distributions based on fully Bayesian methods for incorporating overconfidence and dependence among experts, and compare them with the two existing methods.The project will lead to better methods and an improved understanding of alternative methods for combining expert judgment in environmental risk analysis. Many parameters in a risk-analysis model cannot be measured directly, for physical or ethical reasons (e.g., one typically cannot trace pollutants far from their source nor conduct toxicity studies on humans). As a result, parameter estimates are often based on expert judgment. In most cases, the expert judgment is applied informally, as when the model builders use their own "best guess" estimates of parameter values. In some cases (such as risks associated with nuclear power), judgments (in the form of probability distributions) are elicited from a panel of experts. However, there is at present no standard method for combining judgments from multiple experts, and limited understanding of the properties of alternative methods. This research will lead to better understanding of alternative methods and, ultimately, to better use of expert judgment.
这个与Gelman(0084368)和Hammitt(0084372)的合作项目将开发和演示在环境风险分析中使用专家判断的改进方法。风险分析模型严重依赖于通过非正式或正式专家判断获得的参数估计。这种方法可能对两个问题很敏感:专家将他们的知识编码成概率分布的偏见(如过度自信偏见),以及专家之间判断的典型不确定依赖程度(例如,每个专家的判断结合了他对共同科学文献的阅读和他自己的经验和解释)。该项目将分析两种最先进的结合专家判断的方法的特性:由代尔夫特理工大学的罗杰·库克及其同事开发的“经典”方法和由杜克大学的罗伯特·克莱门及其同事开发的“copula”方法。它将比较数学方法,并通过评估它们在合成和实际专家判断数据集上的性能。此外,该项目将开发基于完全贝叶斯方法的改进方法,用于结合专家之间的过度自信和依赖,并将其与现有的两种方法进行比较。该项目将导致更好的方法和对环境风险分析中结合专家判断的替代方法的更好理解。由于物理或伦理原因,风险分析模型中的许多参数无法直接测量(例如,通常无法在远离污染源的地方追踪污染物,也无法对人体进行毒性研究)。因此,参数估计往往是基于专家判断。在大多数情况下,专家判断是非正式的,当模型构建者使用他们自己对参数值的“最佳猜测”估计时。在某些情况下(例如与核电有关的风险),判断(以概率分布的形式)是从专家小组中得出的。然而,目前还没有标准的方法来结合多个专家的判断,并且对替代方法的性质的理解有限。这项研究将导致更好地理解替代方法,并最终更好地利用专家判断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Clemen其他文献
Robert Clemen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Robert Clemen', 18)}}的其他基金
Collaborative Reseach: Model-based Methods for Debiasing Individual Probability Assessments: Theory, Experiments, and Application to Mississippi River Delta Restoration
合作研究:基于模型的个体概率评估去偏方法:理论、实验以及在密西西比河三角洲恢复中的应用
- 批准号:
0962535 - 财政年份:2010
- 资助金额:
$ 8.53万 - 项目类别:
Continuing Grant
Method vs. Preference Learning In Decision Analytic Preference Assessment
决策分析偏好评估中的方法与偏好学习
- 批准号:
0922154 - 财政年份:2009
- 资助金额:
$ 8.53万 - 项目类别:
Standard Grant
Prescriptive Models for Improving Subjective Probability Judgments
改善主观概率判断的规范模型
- 批准号:
0317867 - 财政年份:2003
- 资助金额:
$ 8.53万 - 项目类别:
Continuing Grant
Collaborative Research on Dependence Assessment for Decision and Risk Analysis
决策与风险分析的依赖性评估合作研究
- 批准号:
9596176 - 财政年份:1995
- 资助金额:
$ 8.53万 - 项目类别:
Continuing Grant
Collaborative Research on Dependence Assessment for Decision and Risk Analysis
决策与风险分析的依赖性评估合作研究
- 批准号:
9422588 - 财政年份:1995
- 资助金额:
$ 8.53万 - 项目类别:
Continuing Grant
Collaborative Research on Dependence Assessment for Decision and Risk Analysis
决策与风险分析的依赖性评估合作研究
- 批准号:
9320754 - 财政年份:1994
- 资助金额:
$ 8.53万 - 项目类别:
Standard Grant
Collaborative Research on Flexible Modeling and Analysis for Information Aggregation
信息聚合灵活建模与分析协同研究
- 批准号:
9022616 - 财政年份:1991
- 资助金额:
$ 8.53万 - 项目类别:
Continuing Grant
Enhancing a Data Set for Use in Structural Modeling of Risk Perception : Doctoral Dissertation
增强用于风险感知结构建模的数据集:博士论文
- 批准号:
8912104 - 财政年份:1989
- 资助金额:
$ 8.53万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308680 - 财政年份:2023
- 资助金额:
$ 8.53万 - 项目类别:
Continuing Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
- 批准号:
2308679 - 财政年份:2023
- 资助金额:
$ 8.53万 - 项目类别:
Continuing Grant
Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
- 批准号:
2309825 - 财政年份:2023
- 资助金额:
$ 8.53万 - 项目类别:
Continuing Grant
Collaborative Research: Combining Galaxy and Cosmic Microwave Background Surveys for Precise and Robust Constraints on Cosmology
合作研究:结合星系和宇宙微波背景调查对宇宙学进行精确和稳健的约束
- 批准号:
2306166 - 财政年份:2023
- 资助金额:
$ 8.53万 - 项目类别:
Standard Grant
Collaborative Research: Combining Galaxy and Cosmic Microwave Background Surveys for Precise and Robust Constraints on Cosmology
合作研究:结合星系和宇宙微波背景调查对宇宙学进行精确和稳健的约束
- 批准号:
2306165 - 财政年份:2023
- 资助金额:
$ 8.53万 - 项目类别:
Standard Grant
Collaborative Research: Prechlorination, aging, and backwashing effects on spatiotemporal ultrafiltration fouling: Optimizing productivity by combining experiments and theory
合作研究:预氯化、老化和反洗对时空超滤污垢的影响:通过实验和理论相结合优化生产率
- 批准号:
2211035 - 财政年份:2022
- 资助金额:
$ 8.53万 - 项目类别:
Standard Grant
Collaborative Research: Combining Heterogeneous Data Sources to Identify Genetic Modifiers of Diseases
合作研究:结合异质数据源来识别疾病的遗传修饰因素
- 批准号:
2223133 - 财政年份:2022
- 资助金额:
$ 8.53万 - 项目类别:
Continuing Grant
Collaborative Research: Combining Self-organized Maps and Idealized Storm-scale Simulations to Investigate the Effect of Future Climate Change on Severe Convective Storms
合作研究:结合自组织地图和理想化风暴规模模拟来研究未来气候变化对强对流风暴的影响
- 批准号:
2209052 - 财政年份:2022
- 资助金额:
$ 8.53万 - 项目类别:
Standard Grant
Collaborative Research: Prechlorination, aging, and backwashing effects on spatiotemporal ultrafiltration fouling: Optimizing productivity by combining experiments and theory
合作研究:预氯化、老化和反洗对时空超滤污垢的影响:通过实验和理论相结合优化生产率
- 批准号:
2211001 - 财政年份:2022
- 资助金额:
$ 8.53万 - 项目类别:
Standard Grant
Collaborative Research: EAGER: Solving Darwins paradox: combining emerging technologies to quantify energy fluxes on coral reefs
合作研究:EAGER:解决达尔文悖论:结合新兴技术来量化珊瑚礁上的能量通量
- 批准号:
2210202 - 财政年份:2022
- 资助金额:
$ 8.53万 - 项目类别:
Standard Grant