Parametrically Excited Nonlinear Gyroscopic Systems

参数激励非线性陀螺仪系统

基本信息

项目摘要

PI: N. Sri NamachchivayaUniversity of Illinois @ Urbana-ChampaignProposal (# 0084944) Title: Parametrically Excited Nonlinear Gyroscopic SystemsThe overall goal of our proposed investigation is to formulate and develop methods to study the long term effects of small dissipative, symmetry-breaking and time-dependent perturbations on nonlinear gyroscopic systems, particularly the dynamics of rotating shafts and pipes conveying fluid. This proposal outlines a unified framework to study nonlinear systems with either periodic} or stochastic perturbations. An understanding of the dynamics of parametrically excited gyroscopic systems necessitates a study of the complex interactions between time-dependent inputs, symmetries, and nonlinearities. Our approach will consist of the application of some recent theories of deterministic and stochastic dimensional reduction to relevant nonlinear gyroscopic models. The proposed work consists of essentially four components: appropriate modelling, further development of some theoretical considerations, numerical algorithms, and experimental verification. The outcome will be a greatly-enhanced understanding of the stability and global dynamics of gyroscopic systems under dissipation and time-dependent perturbations. In the deterministic context, we will be able to predict global dynamics and the mechanisms which give rise to global bifurcations in gyroscopic systems. We shall also examine stabilization of gyroscopic systems by periodic excitations when the excitation frequency is slightly above a certain resonance frequency.In the stochastic context, we will be able to compute a number of standard stability indices (e.g., stationary measures and exit times) in a theoretically correct and computationally efficient way. In the final part of this research, dynamic experimentswill be conducted on a rotating shaft to verify the theoretical results obtained. These dynamics experiments will locate the stability boundaries and examine the nature of the nonlinear response. The numerical and experimental results will, in turn, guide the theories to incorporate any new phenomena observed.
PI:N.SRI NamachchivayaUniversity of Illinois@Urbana-ChampaignProposal(#0084944)标题:参数激励的非线性陀螺系统我们提出的研究的总体目标是建立和发展方法来研究微小的耗散、对称破缺和依赖时间的扰动对非线性陀螺系统的长期影响,特别是旋转轴和输送流体的管道的动力学。这一建议概述了一个研究周期或随机扰动的非线性系统的统一框架。要理解参激陀螺系统的动力学,就必须研究依赖时间的输入、对称性和非线性之间的复杂相互作用。我们的方法将包括将最近的一些确定性和随机性降维理论应用于相关的非线性陀螺模型。建议的工作基本上由四个部分组成:适当的建模、一些理论考虑的进一步发展、数值算法和实验验证。其结果将大大增强对陀螺系统在耗散和依赖于时间的扰动下的稳定性和全局动力学的理解。在确定性的背景下,我们将能够预测陀螺系统的全局动力学和导致全局分叉的机制。我们还将研究当激励频率略高于某个共振频率时,陀螺系统在周期激励下的稳定性。在随机环境中,我们将能够以理论上正确和计算有效的方式计算一些标准稳定性指标(例如,平稳度量和退出时间)。在本研究的最后部分,将在转轴上进行动力学实验,以验证理论结果的正确性。这些动力学实验将定位稳定边界,并检查非线性响应的性质。数值和实验结果将反过来指导理论纳入所观察到的任何新现象。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

N. Sri Namachchivaya其他文献

Random Perturbations of Aeroelastic and Mechanical Systems
  • DOI:
    10.1016/j.proeng.2016.05.100
  • 发表时间:
    2016-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nishanth Lingala;N. Sri Namachchivaya;Prince Singha;Hoong Chieh Yeong
  • 通讯作者:
    Hoong Chieh Yeong
Optimal nudging in particle filters
  • DOI:
    10.1016/j.probengmech.2013.08.007
  • 发表时间:
    2014-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    N. Lingala;N. Perkowski;H.C. Yeong;N. Sri Namachchivaya;Z. Rapti
  • 通讯作者:
    Z. Rapti
Stability of noisy nonlinear auto-parametric systems
  • DOI:
    10.1007/s11071-006-9063-7
  • 发表时间:
    2006-12-21
  • 期刊:
  • 影响因子:
    6.000
  • 作者:
    N. Sri Namachchivaya;David Kok;S. T. Ariaratnam
  • 通讯作者:
    S. T. Ariaratnam
Reduced normal forms for nonlinear control of underactuated hoisting systems
欠驱动提升系统非线性控制的简化范式
  • DOI:
    10.1007/s00419-011-0557-5
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    C. Rapp;E. Kreuzer;N. Sri Namachchivaya
  • 通讯作者:
    N. Sri Namachchivaya
Rigorous Stochastic Averaging at a Center with Additive Noise
在带有加性噪声的中心进行严格的随机平均
  • DOI:
    10.1023/a:1019614613583
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    N. Sri Namachchivaya;R. Sowers
  • 通讯作者:
    R. Sowers

N. Sri Namachchivaya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('N. Sri Namachchivaya', 18)}}的其他基金

BECS: Decadal Climate Prediction Based on Coupled Ocean-Atmosphere Models and Networks of Aerial and Oceanic Sensors
BECS:基于海洋-大气耦合模型以及空中和海洋传感器网络的十年气候预测
  • 批准号:
    1024772
  • 财政年份:
    2010
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
DynSyst_Special_Topics: Multiscale Dynamics and Information in Data Collection and Assimilation for Complex Systems
DynSyst_Special_Topics:复杂系统数据收集和同化中的多尺度动力学和信息
  • 批准号:
    1030144
  • 财政年份:
    2010
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Dynamics and Stability of Stochastic Nonlinear Auto-parametric Systems
随机非线性自参数系统的动力学和稳定性
  • 批准号:
    0758569
  • 财政年份:
    2008
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Stability and Nonlinear Dynamics of Variable Speed Milling
变速铣削的稳定性和非线性动力学
  • 批准号:
    0504581
  • 财政年份:
    2005
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
International Workshop on Applied Dynamical Systems
应用动力系统国际研讨会
  • 批准号:
    0544619
  • 财政年份:
    2005
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Workshop on Bifurcation Theory and Spatio-Temporal Pattern Formation; Decembe 11-13, 2003; Toronto, Canada
分岔理论与时空格局形成研讨会;
  • 批准号:
    0344525
  • 财政年份:
    2003
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Dynamics of Noisy Nonlinear Mechanical Systems
噪声非线性机械系统的动力学
  • 批准号:
    0301412
  • 财政年份:
    2003
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
International Symposium on Nonlinear Stochastic Dynamics
非线性随机动力学国际研讨会
  • 批准号:
    0129587
  • 财政年份:
    2001
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Nonlinear Dynamics of Flexible Spinning Discs
柔性旋转盘的非线性动力学
  • 批准号:
    9610456
  • 财政年份:
    1997
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant
Experimental Studies in Mechanical Systems Under Harmonic and Stochastic Excitations
谐波和随机激励下机械系统的实验研究
  • 批准号:
    9212959
  • 财政年份:
    1992
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Standard Grant

相似海外基金

Nonlinear wave phenomena excited on vortex lines in quantum turbulence
量子湍流中涡线激发的非线性波现象
  • 批准号:
    22K03518
  • 财政年份:
    2022
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Exploring and exploiting complex nonlinear dynamical states in friction-excited mechanical systems
探索和利用摩擦激励机械系统中的复杂非线性动态
  • 批准号:
    406233458
  • 财政年份:
    2018
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Research Grants
Unravelling nonlinear phenomena in thermoacoustic self-excited oscillations−aiming at promotion and suppression of the oscillations−
揭示热声自激振荡中的非线性现象
  • 批准号:
    18H01375
  • 财政年份:
    2018
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a high-performance system of vibration analysis based on a new type of complex modal analysis for a self-excited system and a nonlinear system
基于自激系统和非线性系统的新型复模态分析的高性能振动分析系统的开发
  • 批准号:
    17H03191
  • 财政年份:
    2017
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Construction of a lattice scale control method of nonlinear energy localizations excited in crystal
晶体激发非线性能量局域晶格尺度控制方法的构建
  • 批准号:
    16K05041
  • 财政年份:
    2016
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
CAREER: Surface-Enhanced Nonlinear Spectroscopy: Mapping Electronic Excited States, Probing Surface Adsorbate Structure, and Ultrasensitive Detection
职业:表面增强非线性光谱:绘制电子激发态、探测表面吸附结构和超灵敏检测
  • 批准号:
    1512886
  • 财政年份:
    2014
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Continuing Grant
CAREER: Surface-Enhanced Nonlinear Spectroscopy: Mapping Electronic Excited States, Probing Surface Adsorbate Structure, and Ultrasensitive Detection
职业:表面增强非线性光谱:绘制电子激发态、探测表面吸附结构和超灵敏检测
  • 批准号:
    1150687
  • 财政年份:
    2012
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Continuing Grant
Experimental study of the linear and nonlinear optical properties of silver nanowires and the spatio-temporal control of the propagation of excited plasmons
银纳米线线性和非线性光学特性及激发等离激元传播时空控制的实验研究
  • 批准号:
    170845890
  • 财政年份:
    2010
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Research Fellowships
Field-vibration tests for large-scaled practical use Tainter-gates in Japan and the nonlinear effect for the self-excited steady vibration
日本大规模实用化Tainter门的现场振动试验及自激稳态振动的非线性效应
  • 批准号:
    21760173
  • 财政年份:
    2009
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
CAREER: Nonlinear Magnetization Dynamics Excited by Spin Transfer Torque
职业:自旋转移扭矩激发的非线性磁化动力学
  • 批准号:
    0748810
  • 财政年份:
    2008
  • 资助金额:
    $ 18.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了