Automatic Resolution of Semantic Ambiguity in Natural Language
自然语言语义歧义的自动解决
基本信息
- 批准号:0092784
- 负责人:
- 金额:$ 34.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-03-15 至 2007-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Most words in natural language have multiple possible meanings. This simple fact causes no end of difficulties for computer systems that seek to understand and generate natural language. The semantic ambiguity of words impacts natural language subtasks such as prepositional phrase attachment and pronoun reference resolution, as well as large-scale applications such as machine translation and information retrieval. Automatic methods that resolve ambiguity in word meaning have the potential to advance the state-of-the-art in natural language processing as a whole, but most approaches to word sense disambiguation have proven difficult to deploy on a wide scale because they are dependent on the availability of specialized sources of knowledge that do not exist across a range of domains. The PI's goal in this project is to develop techniques that will ease and ultimately eliminate knowledge acquisition bottlenecks for word sense disambiguation. He will achieve this by pursuing three specific objectives: 1) develop methods that automatically identify the most relevant contextual features for determining the sense of any ambiguous word; 2) develop disambiguation algorithms that learn from "just a few" manually created examples; and 3) develop unsupervised methods that allow any set of word meanings to serve as the target of the disambiguation process. The combined effect of meeting these objectives will be to liberate word sense disambiguation from dependence on particular knowledge sources and thereby simplify their integration into natural language processing systems
自然语言中的大多数单词都有多种可能的含义。这个简单的事实给试图理解和生成自然语言的计算机系统带来了无穷无尽的困难。词的语义歧义不仅影响介词短语附加、代词指称消解等自然语言子任务,也影响机器翻译、信息检索等大规模应用。解决词义歧义的自动方法有可能提高自然语言处理的整体水平,但事实证明,大多数词义消歧方法很难大规模部署,因为它们依赖于专业知识来源的可用性,而这些知识来源不存在于一系列领域。PI在这个项目中的目标是开发能够缓解并最终消除词义消除歧义的知识获取瓶颈的技术。他将通过追求三个具体目标来实现这一目标:1)开发方法,自动识别最相关的上下文特征,以确定任何歧义单词的含义;2)开发消除歧义的算法,从“几个”手动创建的例子中学习;以及3)开发无监督的方法,允许任何一组单词的含义作为消除歧义过程的目标。达到这些目标的综合效果将是将词义消歧从对特定知识来源的依赖中解放出来,从而简化它们与自然语言处理系统的集成
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Theodore Pedersen其他文献
Theodore Pedersen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于Resolution算法的交互时态逻辑自动验证机
- 批准号:61303018
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
- 批准号:
2325311 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335568 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
- 批准号:
2335569 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
- 批准号:
2340414 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
Cubesat Technologies for High Spatial Resolution Astrophysics
用于高空间分辨率天体物理学的立方体卫星技术
- 批准号:
DP240102015 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Discovery Projects
LC-MS/MS system with high-resolution mass spectrometer and nano-UHPLC - 2/2
配备高分辨率质谱仪和纳米 UHPLC 的 LC-MS/MS 系统 - 2/2
- 批准号:
527318363 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Major Research Instrumentation
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
- 批准号:
10097846 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Collaborative R&D
From lymphatics to evaluating resolution therapeutics in clinical trials
从淋巴管到评估临床试验中的解决疗法
- 批准号:
MR/Y013050/1 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Fellowship
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
- 批准号:
2323649 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Standard Grant
Atomistic reconstruction of large biomolecular systems from low-resolution cryo-electron microscopy data - RECKON
利用低分辨率冷冻电子显微镜数据原子重建大型生物分子系统 - RECKON
- 批准号:
EP/Y010221/1 - 财政年份:2024
- 资助金额:
$ 34.34万 - 项目类别:
Fellowship