Spline-Wavelet Frames in Computer Graphics and other Applications
计算机图形学和其他应用中的样条小波框架
基本信息
- 批准号:0098331
- 负责人:
- 金额:$ 29.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proposal 0098331 Charles K Chui, Wenjie He, and Joachim StoecklerU of Missouri, Saint LouisAbstract: Tight frames with scaling factor 2, generated by the standard affine operations of dilation and translation of two compactly supported cardinal splines, called frame generators, can be easily constructed for any spline order m (or degree m-1), by applying matrix extension techniques. However, regardless of the number of (spline) frame generators being used, at least one of them has only one vanishing moment, when the matrix extension approach is followed.In our recent work, we introduced the notion of "vanishing-moment recovery" Laurent polynomial factors S(z) is introduced to show that the maximum number m of vanishing moments can be achieved by both compactly supported tight frame generators, for any order m. Furthermore, the Laurent polynomials S(z) can be formulated explicitly when tight frames are relaxed to be sibling frames; that is, both frame generators, together with their corresponding duals, are compactly supported cardinal splines of the same order m. These additional vanishing moments are essential for effective use of the wavelet coefficients for feature extraction, noise removal, etc.Cardinal splines are spline functions with an equally spaced knot sequence extending from. However, in most practical applications, the intervals of interest are bounded and data samples may not be uniformly distributed. Hence, mth order splines with arbitrary knots, or at least with m stacked knots at one or both end-points of the interval of interest, are needed. This new research project is concerned with formulation of the matrix equivalent Sk of the Laurent polynomials S(z), construction of Sk and the corresponding tight (and more generally sibling) frame generators of mth order compactly supported splines with arbitrary knots and with m vanishing moments, achievement of such important features as inter-orthogonality for sibling frames, development and integration of the associated frame algorithms with the existing spline tools, investigation of spline-wavelet frame tools for adding sparsification and editing fearures for applications in computer graphics, and development of a portable software library.
提案 0098331 Charles K Chui、Wenjie He 和 Joachim StoecklerU(密苏里州圣路易斯)摘要:缩放因子为 2 的紧框架是通过两个紧支撑基数样条的膨胀和平移的标准仿射操作(称为框架生成器)生成的,可以通过应用矩阵扩展技术轻松地为任何样条阶数 m(或度 m-1)构造。 然而,无论使用多少个(样条)框架生成器,当遵循矩阵扩展方法时,至少其中一个只有一个消失矩。在我们最近的工作中,我们引入了“消失矩恢复”的概念,引入了洛朗多项式因子 S(z),以表明对于任何阶 m,两个紧支撑紧框架生成器都可以实现最大数量 m 的消失矩。 此外,当紧框架放松为同级框架时,可以明确地制定洛朗多项式S(z);也就是说,两个框架生成器及其相应的对偶生成器都是同阶 m 的紧支撑基数样条。 这些额外的消失矩对于有效使用小波系数进行特征提取、噪声消除等至关重要。基数样条是具有等距结序列延伸的样条函数。 然而,在大多数实际应用中,感兴趣的区间是有界的,并且数据样本可能不是均匀分布的。 因此,需要具有任意结的 m 阶样条,或者至少在感兴趣区间的一个或两个端点处具有 m 个堆叠结。 这个新的研究项目涉及洛朗多项式 S(z) 的矩阵等效 Sk 的制定、Sk 的构造以及具有任意结和 m 个消失矩的 m 阶紧支撑样条的相应紧(更一般的兄弟)框架生成器、实现兄弟框架的相互正交性等重要特征、相关框架算法与现有样条工具的开发和集成, 研究为计算机图形学应用添加稀疏化和编辑功能的样条小波框架工具,并开发便携式软件库。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Charles Chui其他文献
Charles Chui的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Charles Chui', 18)}}的其他基金
Tenth International Conference on Approximation Theory
第十届国际逼近论会议
- 批准号:
0089881 - 财政年份:2001
- 资助金额:
$ 29.2万 - 项目类别:
Standard Grant
Tight Frames of Rational Splines and Application to CAD/CAM and Computer Graphics
有理样条的紧框架及其在 CAD/CAM 和计算机图形学中的应用
- 批准号:
9988289 - 财政年份:2000
- 资助金额:
$ 29.2万 - 项目类别:
Standard Grant
Mathematical Sciences: International Conference on Approximation Theory and Related Interdisciplinary Topics
数学科学:逼近理论及相关跨学科主题国际会议
- 批准号:
9406935 - 财政年份:1995
- 资助金额:
$ 29.2万 - 项目类别:
Standard Grant
Mathematical Sciences: A Unified Approach to Discrete Data Representation and Wavelet Analysis
数学科学:离散数据表示和小波分析的统一方法
- 批准号:
9505460 - 财政年份:1995
- 资助金额:
$ 29.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Wavelets, Mulivariate Splines, and Radial Functions
数学科学:小波、多元样条和径向函数
- 批准号:
9206928 - 财政年份:1992
- 资助金额:
$ 29.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: Theory and Applications of Multivariate Splines
数学科学:多元样条的理论与应用
- 批准号:
8901345 - 财政年份:1989
- 资助金额:
$ 29.2万 - 项目类别:
Continuing Grant
Mathematical Sciences: U.S. Israel Workshop on Constructive Approximation and Applications; Jerusalem, Israel; May 16- 21, 1988
数学科学:美国以色列构造近似及应用研讨会;
- 批准号:
8715667 - 财政年份:1988
- 资助金额:
$ 29.2万 - 项目类别:
Standard Grant
U.S.-China Cooperative Research (Mathematics): Problems on Approximation Theory and Its Applications
中美合作研究(数学):逼近论问题及其应用
- 批准号:
8712424 - 财政年份:1988
- 资助金额:
$ 29.2万 - 项目类别:
Standard Grant
Mathematical Sciences: Computational Aspects of MultivariateSplines
数学科学:多元样条的计算方面
- 批准号:
8701190 - 财政年份:1987
- 资助金额:
$ 29.2万 - 项目类别:
Standard Grant
U.S.-Chile Workshop on Multivariate Approximation; Santiago,Chile; December 15-19, 1986
美国-智利多元逼近研讨会;
- 批准号:
8603007 - 财政年份:1986
- 资助金额:
$ 29.2万 - 项目类别:
Standard Grant
相似国自然基金
小波(WAVELET)分析和李群上调和分析
- 批准号:19201014
- 批准年份:1992
- 资助金额:1.3 万元
- 项目类别:青年科学基金项目
脑干听觉诱发电位的(WAVELET)分解研究
- 批准号:39100038
- 批准年份:1991
- 资助金额:3.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Compactly supported directional wavelet frames and their applications
紧支持的方向小波框架及其应用
- 批准号:
RGPIN-2019-04276 - 财政年份:2022
- 资助金额:
$ 29.2万 - 项目类别:
Discovery Grants Program - Individual
Compactly supported directional wavelet frames and their applications
紧支持的方向小波框架及其应用
- 批准号:
RGPIN-2019-04276 - 财政年份:2021
- 资助金额:
$ 29.2万 - 项目类别:
Discovery Grants Program - Individual
Compactly supported directional wavelet frames and their applications
紧支持的方向小波框架及其应用
- 批准号:
RGPIN-2019-04276 - 财政年份:2020
- 资助金额:
$ 29.2万 - 项目类别:
Discovery Grants Program - Individual
Compactly supported directional wavelet frames and their applications
紧支持的方向小波框架及其应用
- 批准号:
RGPIN-2019-04276 - 财政年份:2019
- 资助金额:
$ 29.2万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: Wavelet Frames for Variational Models in Imaging: Bridging Discrete and Continuum
合作研究:成像变分模型的小波框架:桥接离散和连续体
- 批准号:
1418737 - 财政年份:2014
- 资助金额:
$ 29.2万 - 项目类别:
Continuing Grant
Collaborative Research: Wavelet Frames for Variational Models in Imaging: Bridging Discrete and Continuum
合作研究:成像变分模型的小波框架:桥接离散和连续体
- 批准号:
1418772 - 财政年份:2014
- 资助金额:
$ 29.2万 - 项目类别:
Continuing Grant
Multivariate wavelet frames in various function spaces and their applications
各种函数空间中的多元小波框架及其应用
- 批准号:
228051-2009 - 财政年份:2013
- 资助金额:
$ 29.2万 - 项目类别:
Discovery Grants Program - Individual
Multivariate wavelet frames in various function spaces and their applications
各种函数空间中的多元小波框架及其应用
- 批准号:
228051-2009 - 财政年份:2012
- 资助金额:
$ 29.2万 - 项目类别:
Discovery Grants Program - Individual
Multivariate wavelet frames in various function spaces and their applications
各种函数空间中的多元小波框架及其应用
- 批准号:
228051-2009 - 财政年份:2011
- 资助金额:
$ 29.2万 - 项目类别:
Discovery Grants Program - Individual
Multivariate wavelet frames in various function spaces and their applications
各种函数空间中的多元小波框架及其应用
- 批准号:
228051-2009 - 财政年份:2010
- 资助金额:
$ 29.2万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




