Collaborative Research: Globally Optimal Neural Computing: Algorithms and Applications

合作研究:全局最优神经计算:算法与应用

基本信息

  • 批准号:
    0099378
  • 负责人:
  • 金额:
    $ 15.06万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2004-12-31
  • 项目状态:
    已结题

项目摘要

0099378TrafalisThis grant supports a collaboration between a member of the global optimization community (Nick Sahinidis) and an expert in neural computation and optimization (Theodore Trafalis) to develop novel neural network training algorithms and demonstrate their benefits in solving large-scale learning) problems.The application of neural networks to all aspects of technology has escalated recently as engineers and scientists have widely embraced neural computing in their quest for deeper understanding of complex phenomena and systems.Finding the best possible neural network for a particular application requires choosing the network parameters in a way that minimizes learning errors. Even for simple learning problems, the error function possesses a large number of local minima (isolated valleys). Despite the enormous amount of attention devoted to neural networks, there is currently no efficient method that can identify with certainty time global minimum of the error function. Current approaches, such as back-propagation and stochastic search methods, may get trapped at local minima corresponding to large learning errors and suboptimal neural networks. This may lead to incorrect inferences and devastate decision makers.Globally optimal neural computing holds the promise of an enabling technology that could significantly improve learning in many diverse application domains. The results of the proposed research will be implemented in the their widely distributed global optimization software package and will be made available to the research community.
0099378Trafalis这项拨款支持全球优化社区的一名成员(Nick Sahinidis)和神经计算和优化专家(Theodore Trafalis)之间的合作,以开发新的神经网络训练算法,并证明它们在解决大规模学习问题方面的好处。随着工程师和科学家在寻求对复杂现象和系统的更深层次理解时广泛采用神经计算,神经网络在技术各个方面的应用已经升级。为一个特定的应用程序找到最好的神经网络需要以一种最小化学习误差的方式选择网络参数。即使对于简单的学习问题,误差函数也具有大量的局部极小值(孤立谷)。尽管神经网络受到了广泛的关注,但目前还没有一种有效的方法能够在确定时间内识别误差函数的全局最小值。当前的方法,如反向传播和随机搜索方法,可能会陷入局部最小值,从而导致较大的学习误差和次优神经网络。这可能会导致错误的推断,并使决策者陷入困境。全局最优神经计算有望成为一种使能技术,可以显著改善许多不同应用领域的学习。拟议的研究结果将在其广泛分发的全球优化软件包中实施,并将提供给研究界。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Theodore Trafalis其他文献

Theodore Trafalis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Theodore Trafalis', 18)}}的其他基金

ITR: A Real Time Mining of Integrated Weather Data
ITR:综合天气数据的实时挖掘
  • 批准号:
    0205628
  • 财政年份:
    2002
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Continuing Grant
Robust and Interior Point Optimization Methods in Support Vector Machine Training
支持向量机训练中的鲁棒和内点优化方法
  • 批准号:
    9978813
  • 财政年份:
    1999
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Standard Grant
Interior-Point Methods in Artificial Neural Networks
人工神经网络中的内点方法
  • 批准号:
    9212003
  • 财政年份:
    1992
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Belmont Forum Collaborative Research Food-Water-Energy Nexus: Globally and Locally-sustainable Food-Water-Energy Innovation in Urban Living Labs
贝尔蒙特论坛合作研究食物-水-能源关系:城市生活实验室中全球和当地可持续的食物-水-能源创新
  • 批准号:
    1832196
  • 财政年份:
    2018
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Continuing Grant
Belmont Forum Collaborative Research Food-Water-Energy Nexus: Globally and Locally-sustainable Food-Water-Energy Innovation in Urban Living Labs
贝尔蒙特论坛合作研究食物-水-能源关系:城市生活实验室中全球和当地可持续的食物-水-能源创新
  • 批准号:
    1832195
  • 财政年份:
    2018
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Continuing Grant
Belmont Forum Collaborative Research Food-Water-Energy Nexus: Globally and Locally-sustainable Food-Water-Energy Innovation in Urban Living Labs
贝尔蒙特论坛合作研究食物-水-能源关系:城市生活实验室中全球和当地可持续的食物-水-能源创新
  • 批准号:
    1832203
  • 财政年份:
    2018
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Standard Grant
Belmont Forum Collaborative Research Food-Water-Energy Nexus: Globally and Locally-sustainable Food-Water-Energy Innovation in Urban Living Labs
贝尔蒙特论坛合作研究食物-水-能源关系:城市生活实验室中全球和当地可持续的食物-水-能源创新
  • 批准号:
    1832233
  • 财政年份:
    2018
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: Assessing the Sensitivity of High-altitude Environments to Globally Warm Climate as Recorded by Lacustrine Microbialite Carbonates
合作研究:评估湖相微生物碳酸盐记录的高海拔环境对全球温暖气候的敏感性
  • 批准号:
    1826869
  • 财政年份:
    2018
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Standard Grant
Collaborative Research: The cryptic diet of the globally significant pelagic tunicate Dolioletta gegenbauri (Uljanin, 1884).
合作研究:全球重要的远洋被囊动物 Dolioletta gegenbauri 的神秘饮食(Uljanin,1884)。
  • 批准号:
    1459510
  • 财政年份:
    2015
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Standard Grant
Collaborative Research: The cryptic diet of the globally significant pelagic tunicate Dolioletta gegenbauri (Uljanin, 1884.)
合作研究:全球重要的远洋被囊动物 Dolioletta gegenbauri 的神秘饮食(Uljanin,1884。)
  • 批准号:
    1459293
  • 财政年份:
    2015
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Standard Grant
Collaborative Research: From Cacti to Carnivores: Using transcriptomes to explore the evolution of the highly diverse and globally distributed Caryophyllales
合作研究:从仙人掌到食肉动物:利用转录组探索高度多样化和全球分布的石竹目的进化
  • 批准号:
    1354048
  • 财政年份:
    2014
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Continuing Grant
RUI: Collaborative Research: From Cacti to Carnivores: Using transcriptomes to explore the evolution of the highly diverse and globally distributed Caryophyllales
RUI:合作研究:从仙人掌到食肉动物:利用转录组探索高度多样化和全球分布的石竹目的进化
  • 批准号:
    1352907
  • 财政年份:
    2014
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Continuing Grant
Collaborative Research: Baseline Survey of the Lower Xingu River Rapids, Brazil: a Highly Diverse, Globally Unique, and Immediately Imperiled Ecosystem
合作研究:巴西辛古河下游急流的基线调查:一个高度多样化、全球独特且立即面临危险的生态系统
  • 批准号:
    1257813
  • 财政年份:
    2013
  • 资助金额:
    $ 15.06万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了