Nonconvex Combinatorial Optimization without Auxiliary Binary Variables
没有辅助二元变量的非凸组合优化
基本信息
- 批准号:0100020
- 负责人:
- 金额:$ 40.57万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-01 至 2005-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is about solving Nonconvex Combinatorial Optimization Problems (NCOPs) by linear programming based branch-and-bound algorithms. Most NCOPs can be reformulated as mixed-integer programs (MIPs) by the addition of auxiliary binary variables. For this reason the study of NCOPs other than MIPs has been very limited. However, reformulation may have many disadvantages including increasing the size of the problem significantly. There are some NCOP structures that arise naturally in many practical applications and therefore merit study in their own right. These include: (1) semi-continuous - if a nonnegative variable is positive, it must be at least some positive constant; (2) k-cardinality - no more than k variables from a set of n nonnegative variables may be positive; (3) special ordered set of type 2 - no more than 2 variables from a sequence of n nonnegative variables may be positive, and if 2 variables are positive, they must be adjacent in the sequence. The primary objective of this project is to study these and a small number of other NCOP structures, as has been done for MIPS, and to develop preprocessing procedures, polyhedral results (cuts), branching procedures, and primal heuristics for dealing with them directly. The end result will be efficient branch-and-cut algorithms for linear programs with piecewise linear nonconvex objectives, nonconvex quadratic programs, scheduling and facility location problems, and several other NP-hard problems for which an MIP approach has not been very successful. Decision making problems in manufacturing and logistics, such as resource allocation and facility location are represented by optimization models. This project contributes to the knowledge of algorithms for solving such optimization models that contain certain types of nonlinearities that make the models very difficult to solve. The results of this project will provide significant enhancements to the optimization tools that are used in practice.
这个项目是关于用基于线性规划的分支定界算法来解决非凸组合优化问题。通过添加辅助二进制变量,可以将大多数NCOP重新表示为混合整数规划(MIP)。因此,对MIP以外的NCOP的研究一直非常有限。然而,重新提法可能有许多缺点,包括显著增加问题的规模。有一些NCOP结构在许多实际应用中是自然出现的,因此它们本身就值得研究。它们包括:(1)半连续--如果一个非负变量为正,则它必须至少是某个正常数;(2)k-基数--一组n个非负变量中不超过k个变量可以为正;(3)第二类特殊有序集--一个由n个非负变量组成的序列中,不超过2个变量可以为正,并且如果2个变量为正,则它们必须在序列中相邻。这个项目的主要目标是研究这些和少数其他NCOP结构,就像对MIPS所做的那样,并开发用于直接处理它们的预处理程序、多面体结果(CUTS)、分支程序和原始启发式算法。最终的结果将是具有分段线性非凸目标的线性规划、非凸二次规划、调度和设施选址问题以及其他几个MIP方法不太成功的NP-Hard问题的有效分枝和切割算法。用最优化模型描述了制造和物流中的资源分配、设施选址等决策问题。这个项目有助于了解用于求解此类优化模型的算法知识,这些优化模型包含使模型非常难以求解的某些类型的非线性。该项目的成果将大大改进实践中使用的优化工具。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George Nemhauser其他文献
Erratum to: An abstract model for branching and its application to mixed integer programming
- DOI:
10.1007/s10107-017-1118-7 - 发表时间:
2017-02-07 - 期刊:
- 影响因子:2.500
- 作者:
Pierre Le Bodic;George Nemhauser - 通讯作者:
George Nemhauser
Restrict-and-relax search for 0-1 mixed-integer programs
- DOI:
10.1007/s13675-013-0007-y - 发表时间:
2013-05-01 - 期刊:
- 影响因子:
- 作者:
Menal Guzelsoy;George Nemhauser;Martin Savelsbergh - 通讯作者:
Martin Savelsbergh
George Nemhauser的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George Nemhauser', 18)}}的其他基金
Eager: Discrete Optimization Algorithms for 21st Century Algorithms
Eager:21 世纪算法的离散优化算法
- 批准号:
1415460 - 财政年份:2014
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
Exploratory Research on Engineering the Transport Industries (ETI): Robust Planning for Routing
运输行业工程 (ETI) 的探索性研究:稳健的路线规划
- 批准号:
0085723 - 财政年份:2000
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
17th International Symposium on Mathematical Programming (ISMP 2000)
第十七届国际数学规划研讨会(ISMP 2000)
- 批准号:
0073030 - 财政年份:2000
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
Research in Large-Scale Integer Programming
大规模整数规划研究
- 批准号:
9700285 - 财政年份:1997
- 资助金额:
$ 40.57万 - 项目类别:
Continuing Grant
Industry/University Cooperative Research Center in The Logistics Institute/Material Handling Research
物流研究所产学合作研究中心/物料搬运研究
- 批准号:
9614169 - 财政年份:1997
- 资助金额:
$ 40.57万 - 项目类别:
Continuing Grant
Industry/University Cooperative Research Center for Material Handling/Logistics Institute
物料搬运产学合作研究中心/物流研究所
- 批准号:
9521984 - 财政年份:1995
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
Engineering Research Deployment Teaching Initiative: Deployment of the MINTO Mixed-Integer Optimization System
工程研究部署教学计划:MINTO 混合整数优化系统的部署
- 批准号:
9410318 - 财政年份:1994
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
Industry/University Cooperative Research Center for Material Handling - Evaluator Support
物料搬运行业/大学合作研究中心 - 评估者支持
- 批准号:
9424107 - 财政年份:1994
- 资助金额:
$ 40.57万 - 项目类别:
Continuing Grant
Research in Mixed-Integer Programming
混合整数规划研究
- 批准号:
9115768 - 财政年份:1992
- 资助金额:
$ 40.57万 - 项目类别:
Continuing Grant
Column Generation for Airline Problems
航空公司问题的列生成
- 批准号:
9122674 - 财政年份:1992
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Novel Parallelization Frameworks for Large-Scale Network Optimization with Combinatorial Requirements: Solution Methods and Applications
职业:具有组合要求的大规模网络优化的新型并行化框架:解决方法和应用
- 批准号:
2338641 - 财政年份:2024
- 资助金额:
$ 40.57万 - 项目类别:
Standard Grant
Rational optimization of combinatorial therapies for the treatment of rare cystic fibrosis variants
合理优化治疗罕见囊性纤维化变异的组合疗法
- 批准号:
10736732 - 财政年份:2023
- 资助金额:
$ 40.57万 - 项目类别:
Strengths and Limitations of Formulations for Combinatorial Optimization Problems.
组合优化问题公式的优点和局限性。
- 批准号:
RGPIN-2020-04346 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Discovery Grants Program - Individual
Hybridization of photovoltaic power generation and solar thermal power generation by combinatorial optimization
通过组合优化实现光伏发电与光热发电的混合
- 批准号:
22K03875 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Efficient Algorithms for Combinatorial Optimization Problems in Networks and Beyond
网络及其他领域组合优化问题的有效算法
- 批准号:
RGPIN-2017-03956 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Discovery Grants Program - Individual
Approximation Algorithms for Combinatorial Optimization Problems
组合优化问题的近似算法
- 批准号:
RGPIN-2020-06423 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Discovery Grants Program - Individual
Developing Theory of Combinatorial Optimization Based on Matrix Representations
发展基于矩阵表示的组合优化理论
- 批准号:
22K17853 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Algorithms for hard quadratic combinatorial optimization problems and linkages with quantum bridge analytics
硬二次组合优化问题的算法以及与量子桥分析的联系
- 批准号:
RGPIN-2021-03190 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Discovery Grants Program - Individual
Metaheuristics and Heuristics for Combinatorial and Discrete Optimization Problems
组合和离散优化问题的元启发式和启发式
- 批准号:
DDG-2021-00019 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Discovery Development Grant
New Synergies Between Combinatorial and Continuous Optimization
组合优化和连续优化之间的新协同作用
- 批准号:
RGPIN-2020-06141 - 财政年份:2022
- 资助金额:
$ 40.57万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




