NIRT: Nanostructured Optoelectronic Materials: New Concepts in Theoretical Design, Synthesis, and Processing
NIRT:纳米结构光电材料:理论设计、合成和加工的新概念
基本信息
- 批准号:0103009
- 负责人:
- 金额:$ 160万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-06-15 至 2005-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal was submitted in response to the solicitation "Nanoscale Science and Engineering" (NSF 00-119). The project addresses theoretical methods to design new families of nanostructured building blocks and to guide the assembly of these blocks into mesoscale lattices. Dendritic and molecular self-assembly synthetic techniques will be used to implement theoretically-inspired nanoscale structures. Novel 3-D circuit fabrication techniques will be employed to pattern materials on both the nano and mesoscales to achieve integration of nanoscale materials with traditional micron scale optics and electronics. Equilibrium statistical mechanics and kinetic Monte Carlo theoretical methods, relevant to treating long-range and spatially-anisotropic intermolecular electrostatic interactions, will be refined and implemented. Theory will be used to guide design of the shape of nanoscale molecular objects to permit realization of highly-ordered mesoscale acentric molecular lattices. Such organic lattices do not occur naturally but are critical to device-related phenomena of electro-optic (EO) activity, unimolecular rectification, and photorefraction. Kinetic Monte Carlo calculations will also be employed to investigate nanoscale phase separation and molecular ordering phenomena and to guide the development of processing conditions relevant to the realization of optimized nanostructured acentric material lattices. Precisely sized and shaped nanoscale dendrimers permit inhibition of unwanted intermolecular electrostatic interactions and the realization of a wide range of desired auxiliary properties. Included are low optical loss at telecommunication wavelengths, high thermal and photochemical stability of induced acentric molecular order (electro-optic activity), and processability that permits the fabrication of buried channel EO waveguides and the integration of such waveguides with VLSI electronics and with fiber optics. Second order nonlinear optical chromophores (required for EO activity) can be assembled into a variety of dendrimer structures including those containing multiple chromophores. The operation of dendrimer-based EO devices requires half the drive voltages and extends to twice the bandwidth of current commercial lithium niobate devices. EO dendrimers can be constructed using fluorinated and cyanurate dendrons, which reduce optical loss at 1.55 microns telecommunications wavelength to 0.1-0.2 dB/cm. Use of such dendrons also permits precise control of material refractive index relevant to circuit integration. Surface functionalization of dendrimers with crosslinkable moieties can lead to materials with exceptional thermal and photochemical stability. EO chromophore-containing dendrimers will be assembled into electro-optic materials by a variety of methods including sequential assembly and self-assembly methods; however, the primary method employed for such assembly will be electric field poling. Once prepared, dendrimer-based EO materials will be fabricated by reactive ion etching, two-photon lithography and multi-color lithography into 3-D passive/active optical circuitry, which will be integrated with semiconductor VLSI drive electronics and silica transmission fibers. Organic EO materials will also be integrated with photonic bandgap structures and with controlled-birefringence block copolymer and layered organic materials to realize special device performance. A variety of devices, including spatial light modulators, phased array radars, ultra high bandwidth signal sources and detectors, etc., will be fabricated and evaluated. %%% The project addresses basic research issues in a topical area of materials science with high technological relevance. The proposed research and the format of education/technology exchange contribute to positive economic and social impacts. An integrated research/education program based on an undergraduate student/graduate student/faculty team will be implemented building upon experience NSF-IGERT, NSF-EEC, UW UIF Nanotechnology Center, and UW international exchange programs. A new course will be offered to permit wider dissemination of specialized nano-engineering tools developed in this research/education program. Extensive interactions exist with industry, government laboratories, and international research centers. The project is co-supported by the DMR/EM, ECS/PFET, and EEC Divisions.***
该提案是为了响应“纳米级科学与工程”(NSF 00-119)提交的。该项目介绍了设计纳米结构构件的新家庭的理论方法,并指导这些块将这些块组装到中尺度晶格中。树突状和分子自组装合成技术将用于实施理论上的纳米级结构。新型的3-D电路制造技术将用于对纳米和介质上的材料进行模式,以将纳米级材料与传统的微米尺度光学器件和电子设备相结合。平衡统计力学和动力学蒙特卡洛理论方法,与处理远距离和空间 - 抗分子间静电相互作用有关。理论将用于指导纳米级分子对象形状的设计,以允许实现高分的中尺度分子分子晶格。这种有机晶格并非自然发生,但对与设备相关的电位(EO)活性,非分子整流和光折叠的现象至关重要。动力学蒙特卡洛计算还将用于研究纳米级相分离和分子排序现象,并指导与实现优化的纳米结构的分解分解材料晶格相关的加工条件的发展。精确尺寸和形状的纳米级树枝状聚合物允许抑制不必要的分子间静电相互作用,并实现了广泛的所需辅助性能。其中包括电信波长时的光学损失低,诱导的分子阶(电磁活性)的高热和光化学稳定性以及允许埋入的通道EO波导的加工性,以及将这种波导与VLSI电子与VLSI电子和光纤光学的整合。二阶非线性光发色团(EO活性所需)可以组装成各种树突结构,包括含有多个发色团的结构。基于树枝状聚合物的EO设备的操作需要一半的驱动电压,并将其延伸至当前商用尼贝特设备的带宽的两倍。可以使用氟化和氰尿素树突构建EO树枝状聚合物,从而在1.55微米电信波长下将光损耗降低到0.1-0.2 dB/cm。使用这种树突还允许精确控制与电路集成相关的材料折射率。具有交联部分的树枝状聚合物的表面功能化可以导致具有特殊热和光化学稳定性的材料。含EO发色团的树突聚合物将通过多种方法组装到电形材料中,包括顺序组装和自组装方法。但是,用于这种组装的主要方法将是电场极点。一旦准备就绪,将通过反应性离子蚀刻,两光刻光刻和多色光刻来制造基于树状聚合物的EO材料,将其与3D无源/主动光学电路构成,该电路将与半导体VLSI驱动电子和硅胶透射光纤集成。有机EO材料还将与光子带隙结构以及受控的双向嵌段共聚物和分层有机材料集成,以实现特殊的设备性能。将制造和评估各种设备,包括空间光调节器,相分阵雷达,超高带宽信号源和检测器等。 %%%该项目解决了具有高技术相关性的材料科学主题领域的基础研究问题。拟议的研究和教育/技术交流的形式有助于积极的经济和社会影响。基于本科生/研究生/教职员工团队的综合研究/教育计划将在经验NSF-Igert,NSF-EEC,UW UIF纳米技术中心和UW International Exchange计划的基础上实施。将提供一项新课程,以允许在本研究/教育计划中开发的专门纳米工程工具更广泛地传播。与行业,政府实验室和国际研究中心存在广泛的互动。该项目由DMR/EM,ECS/PFET和EEC部门共同支持。***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Larry Dalton其他文献
Nanoimprinting for all-polymer electro-optic waveguide devices
全聚合物电光波导器件的纳米压印
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Franciele Henrique;Andreas Maeder;Ülle;G. Finco;David Pohl;Fabian Kaufmann;Marc Reig Escalé;Delwin Elder;Larry Dalton;Rachel Grange - 通讯作者:
Rachel Grange
Larry Dalton的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Larry Dalton', 18)}}的其他基金
American Chemical Society Symposium Advancing the Chemical Sciences Through Diversity in Participation, August 10-14, 2014
美国化学会研讨会通过参与多样性推进化学科学,2014 年 8 月 10-14 日
- 批准号:
1442605 - 财政年份:2014
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
Systematic Theory-Guided Nano-Engineering of Desired Order and Viscoelasticity in Electroactive Dendrimers and Polymers
电活性树枝状聚合物和聚合物中所需有序度和粘弹性的系统理论指导纳米工程
- 批准号:
1303080 - 财政年份:2013
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
Multi-Scale Theory Guided Development of Transformative Polymeric and Dendritic Electroactive Materials
多尺度理论指导变革聚合物和树枝状电活性材料的开发
- 批准号:
0905686 - 财政年份:2009
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
International Conference on Molecular Photonics: Interaction of Light with Nano-structured Materials; Friday Harbor, WA
国际分子光子学会议:光与纳米结构材料的相互作用;
- 批准号:
0738632 - 财政年份:2007
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
Development of Synthesis, Processing, and Characterization Techniques for Next Generation Electroactive Materials
下一代电活性材料的合成、加工和表征技术的发展
- 批准号:
0551020 - 财政年份:2006
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
Development of Synthesis, Processing, and Characterization Techniques for Next Generation Electroactive Materials
下一代电活性材料的合成、加工和表征技术的发展
- 批准号:
0092380 - 财政年份:2000
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
Development of Synthesis, Processing, and Characterization Techniques for Next Generation Electroactive Materials
下一代电活性材料的合成、加工和表征技术的发展
- 批准号:
9818179 - 财政年份:1999
- 资助金额:
$ 160万 - 项目类别:
Standard Grant
The Ultrastructure Synthesis and Nonlinear Spectroscopy of Photonic Materials
光子材料的超微结构合成与非线性光谱学
- 批准号:
9528021 - 财政年份:1996
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
New Polymeric Materials for Nonlinear Optical Applications
用于非线性光学应用的新型聚合物材料
- 批准号:
9107806 - 财政年份:1992
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
Synthesis of Polymers and Oligomers for Nonlinear Optical Activity
非线性光学活性聚合物和低聚物的合成
- 批准号:
8815508 - 财政年份:1988
- 资助金额:
$ 160万 - 项目类别:
Continuing Grant
相似国自然基金
基于超导体—半导体纳米结构的量子光电子器件
- 批准号:1211101011
- 批准年份:2021
- 资助金额:0.00 万元
- 项目类别:国际(地区)合作与交流项目
基于超导体-半导体纳米结构的量子光电子器件
- 批准号:
- 批准年份:2021
- 资助金额:200 万元
- 项目类别:
基于超导体—半导体纳米结构的量子光电子器件
- 批准号:12161141009
- 批准年份:2021
- 资助金额:200.00 万元
- 项目类别:
纳米结构调控光电子器件性能研究
- 批准号:
- 批准年份:2019
- 资助金额:130 万元
- 项目类别:优秀青年科学基金项目
币金属纳米团簇成核、结构和反应动力学
- 批准号:91961107
- 批准年份:2019
- 资助金额:80.0 万元
- 项目类别:重大研究计划
相似海外基金
Development of nanostructured semiconductor-photon coupled systems for giant optoelectronic amplification
用于巨型光电放大的纳米结构半导体光子耦合系统的开发
- 批准号:
23K17877 - 财政年份:2023
- 资助金额:
$ 160万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Nanostructured solid-state materials: from fundamental properties to optoelectronic technologies
纳米结构固态材料:从基本特性到光电技术
- 批准号:
RGPIN-2016-05515 - 财政年份:2021
- 资助金额:
$ 160万 - 项目类别:
Discovery Grants Program - Individual
Nanostructured solid-state materials: from fundamental properties to optoelectronic technologies
纳米结构固态材料:从基本特性到光电技术
- 批准号:
RGPIN-2016-05515 - 财政年份:2020
- 资助金额:
$ 160万 - 项目类别:
Discovery Grants Program - Individual
Nanostructured solid-state materials: from fundamental properties to optoelectronic technologies
纳米结构固态材料:从基本特性到光电技术
- 批准号:
RGPIN-2016-05515 - 财政年份:2019
- 资助金额:
$ 160万 - 项目类别:
Discovery Grants Program - Individual
Nanostructured solid-state materials: from fundamental properties to optoelectronic technologies
纳米结构固态材料:从基本特性到光电技术
- 批准号:
RGPIN-2016-05515 - 财政年份:2018
- 资助金额:
$ 160万 - 项目类别:
Discovery Grants Program - Individual