Lower Tail Probabilities and Limit Theorems in Probability and Statistics

概率统计中的下尾概率和极限定理

基本信息

  • 批准号:
    0103487
  • 负责人:
  • 金额:
    $ 9.7万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

This project is devoted to the study of two topics: (i) limit theorems in probability and statistics, and (ii) lower tail and small ball probabilities of Gaussian processes. Limit theorems play a fundamental role in the development of probability and statistics. The principal investigator continues his study in this direction in general, focusing on self-normalized limit theorems in particular. The investigator intends to systematically study moderate deviations for self-normalized sums of independent random variables, for Hotelling's t-statistic and for studentized $U$-statistic. The objective is to establish a Cramer type moderate deviation theorem under a finite third moment condition. Since the self-normalized moderate deviations require few moment conditions, they not only extend classical limit theorems but also provide much wider applicability to other fields, particularly to statistics. The study should also help us better understand the behavior of large classes of statistical functionals since the t-statistic and U-statistic are their building blocks. Another area where limit theorems prove useful is the study of the real zeros of random algebraic and trigonometric polynomials. Such polynomials with random coefficients arise in many disciplines and their behavior is of interest to statisticians, engineers, economists, and mathematicians. The primary focus of the second topic is on estimating lower tail and small ball probabilities for Gaussian processes. These types of probabilities often arise in estimating the chances of rare events occurring in areas where such events are of fundamental importance such as weather prediction, natural disaster prediction and economic indices. One of the objectives is to develop new methods of estimating small ball and lower tail probabilities. The focus is specifically on small ball probabilities of the Brownian sheet in high dimensions and lower tail probabilities for stationary Gaussian processes. The investigator also intends to study basic sample properties for a newly introduced family of Gaussian processes which have the same scaling and time inversion properties as the Brownian motion but are infinitely differentiable. It is believed that this new family of Gaussian processes would prove useful in many other fields as mathematical models. This project is devoted to the study of two topics: (i) limit theorems in probability and statistics, and (ii) lower tail and small ball probabilities of Gaussian processes. Limit theorems play a fundamental role in the development of probability and statistics. It is hoped that the first part of this research may lead to the development of a self-normalized limit theory in probability and statistics, while the second part of the research could provide significant new knowledge about Gaussian random processes as well as about our random environments.
该项目致力于研究两个主题:(i)概率和统计中的极限定理,以及(ii)高斯过程的下尾和小球概率。极限定理在概率论和统计学的发展中起着基础性的作用。主要研究人员继续他的研究在这个方向上一般,特别是专注于自我规范化极限定理。研究者打算系统地研究独立随机变量的自归一化和、Hotelling t统计量和学生化U$统计量的中等偏差。目的是在有限三阶矩条件下建立一个Cramer型中偏差定理。由于自正规化中偏差只需要很少的矩条件,因此它不仅推广了经典的极限定理,而且在其它领域,特别是统计学中也有更广泛的应用.该研究还有助于我们更好地理解大类统计泛函的行为,因为t-统计量和U-统计量是它们的构建块。极限定理证明有用的另一个领域是随机代数和三角多项式的真实的零点的研究。这种随机系数的多项式出现在许多学科中,它们的行为是统计学家,工程师,经济学家和数学家感兴趣的。第二个主题的主要重点是估计高斯过程的下尾和小球概率。这些类型的概率通常出现在估计罕见事件发生的可能性时,这些事件在天气预测,自然灾害预测和经济指数等领域具有根本重要性。目标之一是开发新的方法来估计小球和下尾概率。重点是具体的小球概率的布朗单在高维和较低的尾部概率平稳高斯过程。研究人员还打算研究一个新引入的家庭的高斯过程,具有相同的缩放和时间反演性质的布朗运动,但无限可微的基本样本属性。据信,这一新的高斯过程族将被证明在许多其他领域作为数学模型是有用的。 该项目致力于研究两个主题:(i)概率和统计中的极限定理,以及(ii)高斯过程的下尾和小球概率。极限定理在概率论和统计学的发展中起着基础性的作用。希望这项研究的第一部分可能会导致概率和统计中的自归一化极限理论的发展,而研究的第二部分可以提供有关高斯随机过程以及我们的随机环境的重要新知识。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qi-Man Shao其他文献

Self-normalized central limit theorem for sums of weakly dependent random variables
  • DOI:
    10.1007/bf02214272
  • 发表时间:
    1994-04-01
  • 期刊:
  • 影响因子:
    0.600
  • 作者:
    Magda Peligrad;Qi-Man Shao
  • 通讯作者:
    Qi-Man Shao
On the longest length of consecutive integers
Correction to: Multivariate approximations in Wasserstein distance by Stein’s method and Bismut’s formula
An Erdős-Révész type law of the iterated logarithm for stationary Gaussian processes
Berry-Esseen bounds for degenerate U-statistics with application to distance correlation
  • DOI:
    10.1007/s11425-024-2416-1
  • 发表时间:
    2025-06-06
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Song-Hao Liu;Qi-Man Shao;Hao Shi
  • 通讯作者:
    Hao Shi

Qi-Man Shao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qi-Man Shao', 18)}}的其他基金

Self-Normalized Limit Theorems and Small Ball Probabilities
自归一化极限定理和小球概率
  • 批准号:
    9802451
  • 财政年份:
    1998
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant

相似国自然基金

PABPC1通过胞质聚腺苷酸化调节结肠癌OLFM4基因mRNApoly(A)-tail长度和翻译效率的分子机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A Tale of No Tail: Sperm Flagella Loss in Mormyrids
无尾的故事:斑鸠鱼精子鞭毛的丧失
  • 批准号:
    2243230
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant
CRII: CNS: An Experimental Infrastructure to Reduce Latency Long-tail in Real-time Stream Processing
CRII:CNS:减少实时流处理中延迟长尾的实验基础设施
  • 批准号:
    2245827
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Standard Grant
Tail-hair cortisol and stable isotopes as a retrospective health calendar of elephants
尾毛皮质醇和稳定同位素作为大象回顾性健康日历
  • 批准号:
    22KF0202
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
CAREER: Architecting Datacenters for Optimized Tail Latency at Scale
职业:构建数据中心以大规模优化尾部延迟
  • 批准号:
    2237434
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Continuing Grant
The TAIL-PrEP Study: Acceptability and Feasibility of a Tailored Adherence Intervention for safe discontinuation of Long-acting PrEP
TAIL-PrEP 研究:安全停用长效 PrEP 的定制依从性干预措施的可接受性和可行性
  • 批准号:
    10700242
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
Interplay of the HIV-1 Env cytoplasmic tail, Gag-MA, and membrane: resolving molecular detail and blocking assembly
HIV-1 Env 胞质尾部、Gag-MA 和膜的相互作用:解析分子细节并阻断组装
  • 批准号:
    10772333
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
Tail of the striatum and regulation of exploratory behavior in a wild mouse
野生小鼠纹状体尾部和探索行为的调节
  • 批准号:
    10753855
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
A human ex vivo model of haemostasis: A replacement for rodent tail bleeding assays
人类离体止血模型:啮齿动物尾部出血测定的替代品
  • 批准号:
    NC/X002292/1
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
    Research Grant
Advancing an Innovative NGS Approach to Discover and Investigate Histone Tail Proteolysis
推进创新的 NGS 方法来发现和研究组蛋白尾部蛋白水解
  • 批准号:
    10575717
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
Molecular mechanisms of the core and linker histone tail domains that drive chromatin condensation
驱动染色质浓缩的核心和连接组蛋白尾域的分子机制
  • 批准号:
    10628745
  • 财政年份:
    2023
  • 资助金额:
    $ 9.7万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了