Modeling, Simulation and Analysis of Epitaxial Film Growth

外延膜生长的建模、仿真和分析

基本信息

  • 批准号:
    0103825
  • 负责人:
  • 金额:
    $ 7.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2004-07-31
  • 项目状态:
    已结题

项目摘要

DMS Award AbstractAward #: 0103825PI: Schulze, TimothyInstitution: University of Tennessee, KnoxvilleProgram: Applied MathProgram Manager: Catherine MavriplisTitle: Modeling, Simulation and Analysis of Epitaxial Film GrowthThis proposal concerns the growth of epitaxial films. The simulation technique and coarse-grained model discussed in this proposal are based on kinetic Monte-Carlo (KMC) simulations, which are an established method of simulating crystal growth on an atom-by-atom basis. While believed to be faithful to the micro-scale physics, KMC simulations are extremely slow and there is a recognized need for models appropriate for larger length and time scales. The first of the two approaches discussed in this proposal is a new simulation technique referred to as an Atomistic Difference Scheme. In this method, one assumes that the distribution of atoms on the surface of the film is in near equilibrium and can be computed by time-stepping difference equations derived directly from the KMC transition probabilities. The topography of the crystal, on the other hand, is assumed to evolve on a slower time-scale and is computed on a discrete basis that conserves mass. The second approach seeks a homogenized, continuum version of this micro-scale model. The continuum model takes the form of partial differential equations that describe the system's evolution on macroscopic length and time scales. A final component of this investigation considers the application of these two methods to a continuous processing configuration where substrate (a tape) is continuously passed through a deposition zone. The continuously moving contact-line and its stability are of particular interest.Epitaxial films are of vital technological importance in the semi-conductor industry. As applications for high-temperature super-conductors (HTSC) develop, epitaxial films hold still further promise, with extensive efforts under way to produce HTSC wires and tapes that have enormous current-carrying capacities. At the same time, the film growth process is a burgeoning source of inspiration for applied mathematicians, requiring a wide range of mathematical techniques and simulation tools to explore the behavior of these systems over an enormous range of length scales. In particular, the research undertaken in this proposal seeks to enhance our ability understand and control the nano-scale structure of materials, placing a special emphasis on linking atomic-scale models with traditional modeling approaches.Date: June 22, 2001
DMS Award AbstractAward #: 0103825 PI: Schulze,Alberthy机构: 田纳西大学诺克斯维尔分校课程: 应用数学项目经理:Catherine Mavriplis职务:外延薄膜生长的建模、模拟和分析本提案涉及外延薄膜的生长。 本提案中讨论的模拟技术和粗粒度模型基于动力学蒙特-卡罗(KMC)模拟,这是一种建立在逐原子基础上模拟晶体生长的方法。虽然被认为是忠实于微观尺度的物理,KMC模拟是非常缓慢的,有一个公认的需要模型适合更大的长度和时间尺度。 在本提案中讨论的两种方法中的第一种是一种新的模拟技术,称为原子差分方案。在这种方法中,一个假设的原子在膜的表面上的分布是在近平衡,并可以计算直接从KMC跃迁概率的时间步进差分方程。另一方面,晶体的形貌被假设为在较慢的时间尺度上演化,并且在保持质量的离散基础上计算。 第二种方法寻求这种微观尺度模型的同质化、连续化版本。 连续介质模型采用偏微分方程的形式,描述系统在宏观长度和时间尺度上的演化。 本调查的最后一个组成部分考虑这两种方法的应用程序的连续处理配置,其中基板(磁带)连续通过沉积区。连续运动的接触线及其稳定性是特别令人感兴趣的。外延薄膜在半导体工业中具有重要的技术意义。 随着高温超导体(HTSC)应用的发展,外延薄膜仍有进一步的希望,人们正在广泛努力生产具有巨大载流能力的HTSC电线和带材。 与此同时,薄膜生长过程是应用数学家灵感的一个新兴来源,需要广泛的数学技术和模拟工具来探索这些系统在巨大的长度尺度范围内的行为。 特别是,在这项提案中进行的研究旨在提高我们理解和控制材料纳米尺度结构的能力,特别强调将原子尺度模型与传统建模方法联系起来。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Timothy Schulze其他文献

Timothy Schulze的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Timothy Schulze', 18)}}的其他基金

Kinetic Monte Carlo Simulation of Nanoalloy Crystal Growth
纳米合金晶体生长的动力学蒙特卡罗模拟
  • 批准号:
    1613729
  • 财政年份:
    2016
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
Kinetic Monte Carlo Modeling and Simulation of Phase Boundaries and Polycrystals
相界和多晶的动力学蒙特卡罗建模与仿真
  • 批准号:
    1108643
  • 财政年份:
    2011
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Modeling and Computation of Crystalline Nanostructures
FRG:合作研究:晶体纳米结构的建模和计算
  • 批准号:
    0854920
  • 财政年份:
    2009
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
Multi-Scale Modeling and Simulation in Materials Science
材料科学中的多尺度建模与仿真
  • 批准号:
    0650445
  • 财政年份:
    2007
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
Fast Kinetic Monte Carlo Simulation of Crystal Growth and Evolution
晶体生长和演化的快速动力学蒙特卡罗模拟
  • 批准号:
    0707443
  • 财政年份:
    2007
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
The mushy-zone free-boundary problem
糊状区域自由边界问题
  • 批准号:
    0405650
  • 财政年份:
    2004
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
NSF-NATO POSTDOCTORAL FELLOWSHIP
NSF-北约博士后奖学金
  • 批准号:
    9552797
  • 财政年份:
    1995
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Fellowship Award

相似国自然基金

Simulation and certification of the ground state of many-body systems on quantum simulators
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    40 万元
  • 项目类别:

相似海外基金

CAREER: Multi-Timescale Dynamics Modeling, Simulation, and Analysis of Converter-Dominated Power Systems
职业:以转换器为主导的电力系统的多时间尺度动态建模、仿真和分析
  • 批准号:
    2339148
  • 财政年份:
    2024
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Continuing Grant
Multi-Agent Modeling, Simulation & Analysis of Mixed Vehicular Traffic of Autonomous & Human Driven Vehicles and of Spread of Epidemics & their Mitigation Strategies
多智能体建模、仿真
  • 批准号:
    RGPIN-2021-03281
  • 财政年份:
    2022
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Discovery Grants Program - Individual
Estimating the value and long-term impact of implementing Risk Mitigation Guidance to reduce the harms of substance use disorders during the COVID-19 pandemic: A simulation modeling analysis
评估在 COVID-19 大流行期间实施风险缓解指南以减少物质使用障碍的危害的价值和长期影响:模拟建模分析
  • 批准号:
    445791
  • 财政年份:
    2021
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Operating Grants
Multi-Agent Modeling, Simulation & Analysis of Mixed Vehicular Traffic of Autonomous & Human Driven Vehicles and of Spread of Epidemics & their Mitigation Strategies
多智能体建模、仿真
  • 批准号:
    RGPIN-2021-03281
  • 财政年份:
    2021
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Discovery Grants Program - Individual
A simulation-based technology for stochastic modeling, sensitivity analysis and design optimization, aimed at development of next-generation micro-fluidic devices for biomedical applications.
一种用于随机建模、灵敏度分析和设计优化的模拟技术,旨在开发用于生物医学应用的下一代微流体设备。
  • 批准号:
    10323474
  • 财政年份:
    2021
  • 资助金额:
    $ 7.6万
  • 项目类别:
SCH: INT: Simulation and Decision-Analysis Algorithms for Integrated Modeling of Diseases: A healthy lives for all approach
SCH:INT:疾病综合建模的模拟和决策分析算法:所有人的健康生活方法
  • 批准号:
    1915481
  • 财政年份:
    2020
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
Modeling of Direct Current Grid Equipment for the Simulation and Analysis of Electromagnetic Transients
用于电磁瞬变仿真和分析的直流电网设备建模
  • 批准号:
    517923-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Modeling of Direct Current Grid Equipment for the Simulation and Analysis of Electromagnetic Transients
用于电磁瞬变仿真和分析的直流电网设备建模
  • 批准号:
    517923-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: DNA Packing of Bacteriophages: Liquid Crystal Modeling through Analysis, Knot Theory and Numerical Simulation.
合作研究:噬菌体的 DNA 包装:通过分析、结理论和数值模拟进行液晶建模。
  • 批准号:
    1817156
  • 财政年份:
    2018
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Standard Grant
Mathematical Modeling, Analysis and Simulation of Biofilm Processes
生物膜过程的数学建模、分析和模拟
  • 批准号:
    RGPIN-2014-04375
  • 财政年份:
    2018
  • 资助金额:
    $ 7.6万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了