Analytical and Numerical Methods for Transport Equations
输运方程的分析和数值方法
基本信息
- 批准号:0104112
- 负责人:
- 金额:$ 8.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-01 至 2001-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
0104112PetrovaThis project addresses some problems in transport equations, Godunov type central schemes for hyperbolic conservation laws, classical and nonlinear approximation. The common thread that runs through the proposed research is the use of techniques from approximation theory, harmonic and functional analysis (Littlewood-Paley theory, wavelet decompositions, maximal functions, interpolation and K-functionals) to prove analytic results in other areas of applied mathematics and to use these techniques to develop numerical methods. Particular emphases will be placed on several issues: development of a satisfactory theory for linear transport equations in several space dimensions which arise when linearizing the nonlinear problem, development of Godunov type central schemes for solving multidimensional systems of conservation laws, and application of these schemes to various problems and models. Extensions of averaging lemmas to go from microscopic to macroscopic formulations will also be of primary concern. A portion of this project will address fundamental questions in nonlinear approximation and multivariate cubature.The areas under discussion (nonlinear approximation, analytical properties of solutions to transport equations and development of effective numerical methods for their computation) are of significant practical interest. The applications include image processing, statistical estimation, fluid mechanics, geophysics, meteorology, astrophysics, multi-component flows, ground water flow, semiconductors, and reactive flows.
本项目解决了输运方程、双曲守恒定律的Godunov型中心格式、经典近似和非线性近似中的一些问题。贯穿拟议研究的共同主线是使用来自近似理论、谐波和泛函分析(Littlewood-Paley理论、小波分解、极大函数、插值和k泛函)的技术来证明应用数学其他领域的分析结果,并使用这些技术来开发数值方法。特别的重点将放在几个问题上:在线性化非线性问题时出现的几个空间维度的线性输运方程的令人满意的理论的发展,用于解决守恒定律的多维系统的Godunov型中心格式的发展,以及这些格式在各种问题和模型中的应用。将平均引理从微观公式扩展到宏观公式也将是主要关注的问题。这个项目的一部分将解决非线性近似和多元文化中的基本问题。讨论的领域(非线性近似、输运方程解的解析性质和有效的数值计算方法的发展)具有重要的实际意义。应用包括图像处理、统计估计、流体力学、地球物理学、气象学、天体物理学、多组分流、地下水流、半导体和反应流。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Guergana Petrova其他文献
Generalized Gauss–Radau and Gauss–Lobatto formulas with Jacobi weight functions
- DOI:
10.1007/s10543-016-0627-8 - 发表时间:
2016-07-27 - 期刊:
- 影响因子:1.700
- 作者:
Guergana Petrova - 通讯作者:
Guergana Petrova
Food allergy as one of the faces of primary immunodeficiency
食物过敏是原发性免疫缺陷的表现之一
- DOI:
10.37349/eaa.2024.00029 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Polina Kostova;V. Papochieva;Martin Shahid;Guergana Petrova - 通讯作者:
Guergana Petrova
Long-term inhaled corticosteroid treatment and severe asthma in children - the impact on body height and weight
- DOI:
10.1186/2045-7022-5-s2-p15 - 发表时间:
2015-03-23 - 期刊:
- 影响因子:4.000
- 作者:
Guergana Petrova;Vera Papochieva;Snezhina Lazova;Dimitrinka Miteva;Ljupco Zafirovski;Lihnida Zafirovska-Matovska;Penka Perenovska - 通讯作者:
Penka Perenovska
ADAM33 in Bulgarian children with severe asthma
- DOI:
10.1016/j.waojou.2020.100384 - 发表时间:
2020-08-01 - 期刊:
- 影响因子:
- 作者:
Dimitrinka Miteva;Penka Perenovska;Polina Shahid;Stoyan Bichev;Silvya Andonova;Alexey Savov;Guergana Petrova - 通讯作者:
Guergana Petrova
Abstracts from the 3rd International Severe Asthma Forum (ISAF)
- DOI:
10.1186/s13601-017-0149-8 - 发表时间:
2017-05-01 - 期刊:
- 影响因子:4.000
- 作者:
M. E. Ketelaar;K. Van De Kant;F. N. Dijk;E. M. M. Klaassen;N. Grotenboer;M. C. Nawijn;E. Dompeling;G. H. Koppelman;Clare Murray;Philip Foden;Lesley Lowe;Hannah Durrington;Adnan Custovic;Angela Simpson;Andrew J. Simpson;Dominick E. Shaw;Ana R. Sousa;Louise J. Fleming;Graham Roberts;Ioannis Pandis;Aruna T. Bansal;Julie Corfield;Scott Wagers;Ratko Djukanovic;Kian Fan Chung;Peter J. Sterk;Jorgen Vestbo;Stephen J. Fowler;S. J. Tebbutt;A. Singh;C. P. Shannon;Y. W. Kim;C. X. Yang;G. M. Gauvreau;J. M. Fitzgerald;L. P. Boulet;P. M. O’Byrne;N. Begley;A. Loudon;D. W. Ray;Selene Baos;Lucía Cremades;David Calzada;Carlos Lahoz;Blanca Cárdaba;Kewal Asosingh;Chris Lauruschkat;Kimberly Queisser;Nicholas Wanner;Kelly Weiss;Weiling Xu;Serpil Erzurum;Milena Sokolowska;Li-Yuan Chen;Yueqin Liu;Asuncion Martinez-Anton;Carolea Logun;Sara Alsaaty;Rosemarie Cuento;Rongman Cai;Junfeng Sun;Oswald Quehenberger;Aaron Armando;Edward Dennis;Stewart Levine;James Shelhamer;Kilyong Choi;Snezhina Lazova;Penka Perenovska;Dimitrinka Miteva;Stamatios Priftis;Guergana Petrova;Vassil Yablanski;Evgeni Vlaev;Hristina Rafailova;Takashi Kumae;L. J. Holmes;J. Yorke;D. M. Ryan;Sasawan Chinratanapisit;Khlongtip Matchimmadamrong;Jitladda Deerojanawong;Wissaroot Karoonboonyanan;Paskorn Sritipsukho;Vania Youroukova;Denitsa Dimitrova;Yanina Slavova;Spaska Lesichkova;Iren Tzocheva;Snezhana Parina;Svetla Angelova;Neli Korsun;Mihai Craiu;Iustina Violeta Stan;Matea Deliu;Tolga Yavuz;Matthew Sperrin;Umit M. Sahiner;Danielle Belgrave;Cansin Sackesen Sackesen;Ömer Kalayci;Petar Velikov;Tsvetelina Velikova;Ekaterina Ivanova-Todorova;Kalina Tumangelova-Yuzeir;Dobroslav Kyurkchiev;Spyridon Megremis;Bede Constantinides;Alexandros Georgios Sotiropoulos;Paraskevi Xepapadaki;David Robertson;Nikolaos Papadopoulos;Maxim Wilkinson;Craig Portsmouth;David Ray;Royston Goodacre;Anna Valerieva;Irina Bobolea;Daiana Guillén Vera;Gabriel Gonzalez-Salazar;Carlos Melero Moreno;Consuelo Fernandez Rodriguez;Natividad De Las Cuevas Moreno;R. Wang;I. Satia;R. Niven;J. A. Smith;T. Southworth;J. Plumb;V. Gupta;J. Pearson;I. Ramis;M. D. Lehner;M. Miralpeix;D. Singh;Imran Satia;Mark Woodhead;Paul O’Byrne;Jaclyn Ann Smith;Cecilia Forss;Peter Cook;Sheila Brown;Freya Svedberg;Katherine Stephenson;Margherita Bertuzzi;Elaine Bignell;Malin Enerbäck;Danen Cunoosamy;Andrew Macdonald;Caini Liu;Liang Zhu;Kiochi Fukuda;Cunjin Zhang;Suidong Ouyang;Xing Chen;Luke Qin;Suguna Rachakonda;Mark Aronica;Jun Qin;Xiaoxia Li;Marie-Chantal Larose;Anne-Sophie Archambault;Véronique Provost;Jamila Chakir;Michel Laviolette;Nicolas Flamand;Nicola Logan;Dominik Ruckerl;Judith E. Allen;Tara E. Sutherland;E. Hamelmann;C. Vogelberg;S. Goldstein;G. E. Azzi;M. Engel;R. Sigmund;S. J. Szefler;Raquel Mesquita;Luis Coentrão;Rui Veiga;José-Artur Paiva;Roberto Roncon-Albuquerque;Wendy Vargas Porras;Ana González Moreno;Jesus Macías Iglesias;Gustavo Córdova Ramos;Yesenia Peña Acevedo;Miguel Angel Tejedor Alonso;Maria Del Mar Moro Moro;Irena Krcmova;Jakub Novosad;Nicola Alexander Hanania;Marc Massanari;Heike Hecker;Eric Kassel;Craig Laforce;Kathy Rickard;Sanne Snelder;Gert-Jan Braunstahl;T. L. Jones;D. Neville;E. R. Heiden;E. Lanning;T. Brown;H. Rupani;K. S. Babu;A. J. Chauhan;M. Y. Eldegeir;A. A. Chapman;M. Ferwana;M. Caldron - 通讯作者:
M. Caldron
Guergana Petrova的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Guergana Petrova', 18)}}的其他基金
Collaborative Research: New Perspectives on Deep Learning: Bridging Approximation, Statistical, and Algorithmic Theories
合作研究:深度学习的新视角:桥接近似、统计和算法理论
- 批准号:
2134077 - 财政年份:2021
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
Computational Challenges in Fluid Transport and Imaging
流体传输和成像的计算挑战
- 批准号:
0810869 - 财政年份:2008
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
Approximation and Learning in High Dimensions
高维逼近和学习
- 批准号:
0708470 - 财政年份:2007
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
Analysis and Numerical Algorithms for Transport Equations and Related Problems
输运方程及相关问题的分析和数值算法
- 批准号:
0505501 - 财政年份:2005
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
Analytical and Numerical Methods for Transport Equations
输运方程的分析和数值方法
- 批准号:
0296020 - 财政年份:2001
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
相似海外基金
Analytical and Numerical Methods in Collisionless Kinetic Theory
无碰撞运动理论中的分析和数值方法
- 批准号:
2107938 - 财政年份:2021
- 资助金额:
$ 8.17万 - 项目类别:
Standard Grant
Analytical and Numerical Methods For Slowly Convergent Integrals and Applications
缓慢收敛积分的分析和数值方法及其应用
- 批准号:
RGPIN-2016-04317 - 财政年份:2021
- 资助金额:
$ 8.17万 - 项目类别:
Discovery Grants Program - Individual
Analytical and Numerical Methods For Slowly Convergent Integrals and Applications
缓慢收敛积分的分析和数值方法及其应用
- 批准号:
RGPIN-2016-04317 - 财政年份:2020
- 资助金额:
$ 8.17万 - 项目类别:
Discovery Grants Program - Individual
Analytical and Numerical Methods For Slowly Convergent Integrals and Applications
缓慢收敛积分的分析和数值方法及其应用
- 批准号:
RGPIN-2016-04317 - 财政年份:2019
- 资助金额:
$ 8.17万 - 项目类别:
Discovery Grants Program - Individual
Studies of the matrix model for superstring theory by analytical and numerical methods
超弦理论矩阵模型的解析和数值研究
- 批准号:
18K03614 - 财政年份:2018
- 资助金额:
$ 8.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytical and Numerical Methods For Slowly Convergent Integrals and Applications
缓慢收敛积分的分析和数值方法及其应用
- 批准号:
RGPIN-2016-04317 - 财政年份:2018
- 资助金额:
$ 8.17万 - 项目类别:
Discovery Grants Program - Individual
Analytical and Numerical Methods for the Equations of Dynamic Density Functional Theory
动态密度泛函理论方程的解析和数值方法
- 批准号:
2699708 - 财政年份:2017
- 资助金额:
$ 8.17万 - 项目类别:
Studentship
Analytical and Numerical Methods For Slowly Convergent Integrals and Applications
缓慢收敛积分的分析和数值方法及其应用
- 批准号:
RGPIN-2016-04317 - 财政年份:2017
- 资助金额:
$ 8.17万 - 项目类别:
Discovery Grants Program - Individual
Hybrid numerical-analytical methods for subsurface flow simulation
地下流动模拟的混合数值分析方法
- 批准号:
327541-2012 - 财政年份:2016
- 资助金额:
$ 8.17万 - 项目类别:
Discovery Grants Program - Individual
Hybrid numerical-analytical methods for subsurface flow simulation
地下流动模拟的混合数值分析方法
- 批准号:
327541-2012 - 财政年份:2015
- 资助金额:
$ 8.17万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




