Unusual Error Correcting Codes
异常纠错码
基本信息
- 批准号:0105692
- 负责人:
- 金额:$ 26.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-01 至 2006-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Error correcting codes were originally invented to increase theprecision of retrieval, storage and communication of data.The investigator's goal is to study and develop codeswith new features added on top of the error correcting property,such as checkability, identifiable parent property (IPP), orquantum-error correcting property. In spite of theimportance of designing codes with added features,there has not ben a comprehensive study of them up to date, and eachdesign is treated as an isolated case. The investigatorwants to put the designs under one umbrella (wheneverit is possible) so that their propertiescan be compared and further improved upon.Among the benefits such improvement can bring aboutare better non-approximability results in complexity theory,better means to trace pirates of electronic images,and new algorithms for quantum computers.The investigator was the first toobserve that constructs in the theory of probabilistically checkableproofs can be viewed as error correcting codes with added features.The best parameters for these codes and their kins arestill not known, and they are the primarytargets of the proposed investigation in the first year.The investigator also plans for a study thatwould lead to a general checkability theorem for product codes,with a surprise application in circuit complexity,and recommends a simplified look at Raz's parallel repetitiontheorem. A different thread of the the proposed researchis motivated by questions about schemesthat protect a multi-media publisher against piracy ofelectronic images. The publisher can use words of a codeto mark electronic copies of an image. Then, if the code isappropriately designed, any image forged by combining pieces of two legallytraded images, contains sufficient amount of information to tracethe identity of at least one of the source (parent) images.Here the problem is to build efficient codes that can identify one ofthree or more source images. Other research targets includeefficiently decodable quantum codes, andcomplexity lower bounds for dynamic problems via unusual codes.There is a general framework in whichthe investigator plans to do the research. This entails:1. The study and exploration of the relation inbetween different unusual codes;2. Their classification and axiomatization;3. Search for novel applications of unusual codesin the theories of lower bounds and pseudo-randomness,and in other walks of computer science;4. Building a 'family tree' of code properties, and finding a matchin between properties and applications.The methodology should embrace and extend classical coding theory.
纠错码最初是为了提高数据的检索、存储和通信的精度而发明的,研究者的目标是研究和开发在纠错特性之上添加新特性的码,如可校验性、可识别父属性(IPP)或量子纠错特性。尽管设计具有附加功能的代码的重要性,但迄今为止还没有对它们进行全面的研究,并且每个设计都被视为孤立的情况。设计师想把这些设计放在一个保护伞下(只要有可能),以便它们的性质可以进行比较和进一步改进。这种改进可以带来的好处包括复杂性理论中更好的非近似性结果,更好的追踪电子图像盗版的手段,以及量子计算机的新算法。研究者是第一个观察到概率可检验证明理论中的结构可以被视为作为具有附加功能的纠错码。这些码及其同类的最佳参数仍然未知,它们是第一年拟议调查的主要目标。调查员还计划进行一项研究,该研究将导致乘积码的一般可检查性定理,在电路复杂性方面有令人惊讶的应用,并建议简化Raz的并行重复定理。一个不同的线程的拟议研究的动机是有关计划的问题,保护多媒体出版商对盗版的电子图像。出版商可以使用代码的单词来标记图像的电子副本。然后,如果代码设计得当,任何由两张合法交易的图像组合而成的图像都包含足够的信息来追踪至少一张源图像(父图像)的身份。这里的问题是构建能够识别三张或更多源图像之一的有效代码。其他的研究目标包括有效的可解码的量子码,以及通过不寻常的代码来解决动态问题的复杂性下限。这需要:1.对不同非常用码之间关系的研究和探索;2.它们的分类和公理化;3.在下界和伪随机理论以及计算机科学的其他领域中寻找不寻常代码的新应用;4.建立代码属性的“家谱”,并找到属性和应用程序之间的匹配。该方法应包含并扩展经典编码理论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mario Szegedy其他文献
All Quantum Adversary Methods are Equivalent
所有量子对手方法都是等效的
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:1
- 作者:
R. Spalek;Mario Szegedy - 通讯作者:
Mario Szegedy
Long Monotone Paths in Line Arrangements
- DOI:
10.1007/s00454-004-1119-1 - 发表时间:
2004-06-07 - 期刊:
- 影响因子:0.600
- 作者:
József Balogh;Oded Regev;Clifford Smyth;William Steiger;Mario Szegedy - 通讯作者:
Mario Szegedy
Efficient testing of large graphs
大图的高效测试
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Noga Alon;Eldar Fischer;Michael Krivelevich;Mario Szegedy - 通讯作者:
Mario Szegedy
UvA-DARE (Digital Academic Repository) Classical simulation of entanglement swapping with bounded communication Branciard,
UvA-DARE(数字学术知识库)具有有限通信的纠缠交换的经典模拟 Branciard,
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
C. Branciard;Nicolas Brunner;Harry Buhrman;R. Cleve;N. Gisin;Samuel Portmann;D. Rosset;Mario Szegedy - 通讯作者:
Mario Szegedy
Hardness of Approximation
- DOI:
10.1201/9781420010749.ch17 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Mario Szegedy - 通讯作者:
Mario Szegedy
Mario Szegedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mario Szegedy', 18)}}的其他基金
AF: Small: Information Compression Arguments
AF:小:信息压缩参数
- 批准号:
1422102 - 财政年份:2014
- 资助金额:
$ 26.05万 - 项目类别:
Standard Grant
Ground States of Local Hamiltonians and Quantum PCPs
局部哈密顿量和量子 PCP 的基态
- 批准号:
1246641 - 财政年份:2013
- 资助金额:
$ 26.05万 - 项目类别:
Standard Grant
Collaborative Research: Understanding, Coping with, and Benefiting from, Intractability
合作研究:理解、应对棘手问题并从中受益
- 批准号:
0832787 - 财政年份:2008
- 资助金额:
$ 26.05万 - 项目类别:
Continuing Grant
QnTM: Quantum Speed-up of Classical Algorithms
QnTM:经典算法的量子加速
- 批准号:
0523866 - 财政年份:2005
- 资助金额:
$ 26.05万 - 项目类别:
Continuing Grant
相似国自然基金
基于Laplace Error惩罚函数的变量选择方法及其在全基因组关联分析中的应用
- 批准号:11001280
- 批准年份:2010
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CRII: AF: RUI: New Frontiers in Fundamental Error-Correcting Codes
CRII:AF:RUI:基本纠错码的新领域
- 批准号:
2347371 - 财政年份:2024
- 资助金额:
$ 26.05万 - 项目类别:
Standard Grant
Error Correcting Constrained Codes for DNA Storage and Their Evaluations
DNA存储的纠错约束码及其评估
- 批准号:
23K10983 - 财政年份:2023
- 资助金额:
$ 26.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Construction of Good CFTs by Error-Correcting Codes
通过纠错码构建良好的 CFT
- 批准号:
23KJ1183 - 财政年份:2023
- 资助金额:
$ 26.05万 - 项目类别:
Grant-in-Aid for JSPS Fellows
FET: Small: Decoding Quantum Error-Correcting Codes for Quantum Computing and Communication
FET:小型:解码量子计算和通信的量子纠错码
- 批准号:
2316713 - 财政年份:2023
- 资助金额:
$ 26.05万 - 项目类别:
Standard Grant
CIF: Small: MoDL: Interpreting Deep-Learned Error-Correcting Codes
CIF:小型:MoDL:解释深度学习纠错码
- 批准号:
2240532 - 财政年份:2023
- 资助金额:
$ 26.05万 - 项目类别:
Standard Grant
Improvements of Entanglement Distillation Protocols by Quantum Error-Correcting Codes
量子纠错码对纠缠蒸馏协议的改进
- 批准号:
23K10980 - 财政年份:2023
- 资助金额:
$ 26.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Locality in Error-Correcting Codes
纠错码中的局部性
- 批准号:
RGPIN-2022-04658 - 财政年份:2022
- 资助金额:
$ 26.05万 - 项目类别:
Discovery Grants Program - Individual
Self-optimizing decoders for modern error-correcting codes that promote energy efficiency on the basis sufficient quality
现代纠错码的自优化解码器可在足够质量的基础上提高能源效率
- 批准号:
RGPIN-2018-04284 - 财政年份:2022
- 资助金额:
$ 26.05万 - 项目类别:
Discovery Grants Program - Individual
Low-Latency Streaming and Storage Systems using Error Correcting Codes
使用纠错码的低延迟流和存储系统
- 批准号:
RGPIN-2019-05797 - 财政年份:2022
- 资助金额:
$ 26.05万 - 项目类别:
Discovery Grants Program - Individual
Cokernels of Random Matrices and the Geometry of Error-Correcting Codes
随机矩阵的核心和纠错码的几何结构
- 批准号:
2154223 - 财政年份:2022
- 资助金额:
$ 26.05万 - 项目类别:
Standard Grant