RUI: Neural Regulation of Metamorphosis in a Gastropod Mollusc

RUI:腹足类软体动物变态的神经调节

基本信息

  • 批准号:
    0110832
  • 负责人:
  • 金额:
    $ 15.1万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-08-01 至 2005-07-31
  • 项目状态:
    已结题

项目摘要

Pires0110832AbstractMetamorphosis is a profoundly important transition in the life history of most animals. The passage from a larval to juvenile form entails destruction of some tissues, respecification of others and generation of new structures. In larvae of gastropod molluscs and in a diverse range of larvae from other phyla, metamorphosis is initiated by a chemical signal from the environment. The chemosensory induction of gastropod metamorphosis, its stereotyped behavioral context and the neuromuscular nature of some morphogenic movements, and the rapidity of morphological change all suggest pervasive control by the larval nervous system. However, very little is known of the mechanisms by which the nervous system can direct dramatic morphological change at the level of the entire organism. Dr. Pires will investigate the neural control of metamorphosis in the gastropod, Crepidula fornicata, focusing on neural signaling in the destruction of the larval velum. This ciliated swimming and feeding organ is precipitously shed by loss of adhesion among and between several types of velar cells within minutes after competent larvae come in contact with the natural cue that induces metamorphosis. The large ciliated cells that line the margin of the velum are the first to detach in metamorphosis, are electrically excitable, and have been shown in other gastropods to carry a synaptically-driven calcium-mediated action potential that causes arrest of ciliary beating. These cilia are arrested in C. fornicata and other gastropods in the moments before destruction of the velum visibly begins, yet no studies have investigated the mechanistic relationship between electrical activity in the velum and the loss of cell adhesion that occurs in metamorphosis. Previous work by Dr. Pires and others has implicated endogenous dopamine as a neuromodulator that potentiates metamorphosis, but its effects on signaling in the velum are unexplored. There is also evidence that hydrogen peroxide or other reactive oxygen species are generated in the metamophosing velum and can induce velar destruction if exogenously applied, but it is not known if reactive oxygen species have a necessary signaling role in a neural mechanism that mediates velar destruction in natural metamorphosis.Dr. Pires will exploit the large size and predictably fast metamorphosis of C. fornicata larvae, and take advantage of microsurgical methods that he developed for working with isolated velar tissues. Dr. Pires and his students will apply intracellular and extracellular electrophysiological techniques as well as pharmacological, histochemical and high-performance liquid chromatographic methods to analyze how neural signals effect a rapid loss of cell adhesion in the metamorphosing velum. This project affords undergraduate research students an unusual opportunity to engage in developmental neuroscience that cuts across several levels of biological organization. An important further training dimension of this project is that summer work will take place at the University of Washington's Friday Harbor Laboratories, where undergraduates will be immersed in a rich and exhilarating scientific community at a time when they will be making decisions about future research careers.
变态是大多数动物生活史上一次极其重要的转变。从幼虫到幼虫的过程中,需要破坏一些组织,重新指定其他组织,并产生新的结构。在腹足软体动物的幼虫和其他门的不同种类的幼虫中,变态是由来自环境的化学信号启动的。腹足类变态的化学感官诱导,其刻板的行为背景,一些形态发生运动的神经肌肉性质,以及形态变化的快速,都表明幼虫神经系统的普遍控制。然而,人们对神经系统在整个有机体水平上引导戏剧性形态变化的机制知之甚少。Pires博士将研究腹足类动物Crepidula forNicata变态的神经控制,重点是破坏幼虫膜的神经信号。这种有纤毛的游动和摄食器官在几种类型的角质细胞之间的粘附力丧失后,在几分钟内就会急剧脱落,因为合格的幼虫接触到诱导变态的自然线索。排列在膜边缘的大型纤毛细胞在变态过程中最先分离,是可电兴奋的,在其他腹足类动物中已被证明携带突触驱动的钙介导的动作电位,导致纤毛跳动停止。这些纤毛在绒毛虫和其他腹足类动物中被阻止在膜被明显破坏之前的瞬间,但还没有研究探讨膜中的电活动和变态过程中发生的细胞黏附丧失之间的机制关系。Pires博士和其他人之前的工作表明,内源性多巴胺是一种神经调节剂,可以加强变态,但它对胎膜信号的影响尚不清楚。也有证据表明,过氧化氢或其他活性氧物种在变态膜中产生,如果外源应用,可以诱导膜破坏,但尚不清楚活性氧物种是否在介导自然变态过程中膜破坏的神经机制中具有必要的信号作用。皮雷斯将利用穹隆隐翅虫幼虫的巨大体型和可预见的快速变态,并利用他为处理分离的角质组织而开发的显微外科方法。皮雷斯博士和他的学生将应用细胞内和细胞外的电生理技术,以及药理学、组织化学和高效液相色谱方法,分析神经信号如何影响变性膜中细胞黏附的快速丧失。这个项目为本科生提供了一个不同寻常的机会来从事跨越生物组织的几个层次的发展神经科学。该项目的一个重要的进一步培训方面是,暑期工作将在华盛顿大学的星期五港湾实验室进行,在那里,本科生将沉浸在一个丰富而令人振奋的科学社区中,他们将对未来的研究职业做出决定。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Anthony Pires其他文献

Anthony Pires的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Anthony Pires', 18)}}的其他基金

Ocean Acidification/Collaborative Research/RUI: Effects of Ocean Acidification on Larval Competence, Metamorphosis, and Juvenile Performance in a Planktotrophic Gastropod
海洋酸化/合作研究/RUI:海洋酸化对浮游营养性腹足动物幼体能力、变态和幼体表现的影响
  • 批准号:
    1416690
  • 财政年份:
    2014
  • 资助金额:
    $ 15.1万
  • 项目类别:
    Standard Grant
Integration of Neurobiology into the Biology Curriculum
将神经生物学纳入生物学课程
  • 批准号:
    9451725
  • 财政年份:
    1994
  • 资助金额:
    $ 15.1万
  • 项目类别:
    Standard Grant

相似国自然基金

Neural Process模型的多样化高保真技术研究
  • 批准号:
    62306326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study on the regulation mechanism of neural spine morphology and cognitive function by twinfilin-1
twinfilin-1对神经棘形态和认知功能调节机制的研究
  • 批准号:
    23H02669
  • 财政年份:
    2023
  • 资助金额:
    $ 15.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cytokine Regulation of Secondary Neural Progenitors
次级神经祖细胞的细胞因子调节
  • 批准号:
    10752901
  • 财政年份:
    2023
  • 资助金额:
    $ 15.1万
  • 项目类别:
Understanding stromal cell contributions to the neural regulation in pancreatic cancer
了解基质细胞对胰腺癌神经调节的贡献
  • 批准号:
    491633
  • 财政年份:
    2023
  • 资助金额:
    $ 15.1万
  • 项目类别:
    Miscellaneous Programs
Regulation and function of subcellular RNA localization in neural crest cells and their derivatives
神经嵴细胞及其衍生物亚细胞RNA定位的调控和功能
  • 批准号:
    10739280
  • 财政年份:
    2023
  • 资助金额:
    $ 15.1万
  • 项目类别:
Analysis of molecular mechanisms underlying regulation of fate of neural progenitor cells in the developing neocortex
发育中新皮质神经祖细胞命运调控的分子机制分析
  • 批准号:
    23K05973
  • 财政年份:
    2023
  • 资助金额:
    $ 15.1万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Transcriptional regulation of neural progenitor divisions and cell fate in the developing cortex
发育中皮层神经祖细胞分裂和细胞命运的转录调控
  • 批准号:
    10659677
  • 财政年份:
    2023
  • 资助金额:
    $ 15.1万
  • 项目类别:
Sarm1 and neural regulation of bone
Sarm1 和骨的神经调节
  • 批准号:
    10584348
  • 财政年份:
    2023
  • 资助金额:
    $ 15.1万
  • 项目类别:
Genetic and epigenetic regulation of cranial neural crest differentiation
颅神经嵴分化的遗传和表观遗传调控
  • 批准号:
    10817293
  • 财政年份:
    2023
  • 资助金额:
    $ 15.1万
  • 项目类别:
Neural activity dependent regulation of vascular: implications for Alzheimers disease
神经活动依赖性血管调节:对阿尔茨海默病的影响
  • 批准号:
    10430716
  • 财政年份:
    2022
  • 资助金额:
    $ 15.1万
  • 项目类别:
Novel Modulators of TGFß1 signaling in regulation of remyelination by neural stem cells
TGFα1 信号传导在神经干细胞髓鞘再生调节中的新型调节剂
  • 批准号:
    10544041
  • 财政年份:
    2022
  • 资助金额:
    $ 15.1万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了