Estimation of Spatial Autoregressive Econometric Models with Continous and Limited Dependent Variables
具有连续和有限因变量的空间自回归计量经济学模型的估计
基本信息
- 批准号:0111380
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-07-15 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The field of spatial econometrics is concerned with the use of statistical and econometric techniques to handle spatial effects in multiregional economic models and economic interaction of agents located in space. Proper spatial econometric models need to be developed to empirically validate modern spatial economic theories. Further empirical developments are motivated by the growing importance of Geographic Information Systems (GIS) in regional and urban policy analyses. This project develops econometric methodologies for the estimation and testing of complex spatial econometric models including spatial models with limited dependent variables. This project proceeds in several directions. Statistical properties of some popular estimation methods in the literature are often assumed without detailed investigation into possibly distinctive features of a spatial econometric model. While some claims are correct under certain spatial scenarios, they might not be so in others. The existing literature on spatial econometrics has mainly focused on models with small group interaction but models with large group interaction have many interesting potential applications. This project continues the investigation of statistical properties of popular estimators for spatial autoregressive models with large group interaction. Estimators for spatial models with large group interaction have quite different statistical properties from those of models with small group interaction. This project explores alternative models to capture social interaction effects and addresses issues of random sample and possible incomplete spatial interactions in spatial models. In addition, statistical procedures are developed for distinguishing spatial models from social effect models.Spatial models with agents making interactive discrete choices are useful for research on innovation diffusion processes. The estimation of a discrete choice model with spatial interaction can be quite challenging as its likelihood function involves high dimensional integral. The dimension of integration can be as large as the number of sample observations. In order to develop these models to their full capacities, computationally tractable methods must be developed. This project develops estimation methods based on simulation estimation methodologies. The effectiveness of various simulation estimation methods, which include the method of simulated maximum likelihood, the method of simulated EM algorithm, the method of simulated scores, and the Gibbs sampler, are investigated. Statistical properties of those estimators are studied. In addition to estimation, test statistics for spatial correlations and diagnostics are also developed. This project develops computationally tractable generalized method of moments for the estimation of spatial autoregressive models of any finite order with or without the presence of exogenous variables. Asymptotic properties of such estimators are investigated.Dynamic discrete choice models capture various notions of dynamic effects, state dependence, heterogeneity, and spurious correlation in a panel data setting. This project generalizes existing models to incorporate possible contemporaneous and intertemporal spatial interaction effects. Spatial dynamics in discrete choices are of special interest. Special attention is paid to the specification and estimation of such panel data models. Even though the development of econometric methods is the main focus of this project, empirical studies with panel data from developing countries illustrate the useful of the new models and the feasibility of the methodologies.
空间计量经济学领域关注的是使用统计和计量经济学技术来处理多区域经济模型中的空间效应和空间主体的经济相互作用。需要开发适当的空间计量经济学模型,以实证验证现代空间经济理论。 地理信息系统(GIS)在区域和城市政策分析中的重要性日益增加,推动了进一步的实证发展。 该项目开发了用于估计和测试复杂空间计量经济模型的计量经济学方法,包括具有有限因变量的空间模型。该项目在几个方向上进行。 在文献中,一些流行的估计方法的统计特性往往是假设没有详细的调查可能独特的功能的空间计量经济模型。 虽然有些说法在某些空间情景下是正确的,但在其他情景下可能并非如此。现有的空间计量经济学文献主要集中在小群体相互作用的模型上,但大群体相互作用的模型有许多有趣的潜在应用。 本计画继续研究具有大群体交互作用的空间自回归模型常用估计量的统计性质。 具有大群体交互作用的空间模型的估计量与具有小群体交互作用的空间模型的估计量具有完全不同的统计性质。 这个项目探讨了替代模型来捕捉社会互动效应,并解决了空间模型中随机样本和可能不完整的空间互动问题。 此外,本文还提出了区分空间模型和社会效应模型的统计方法,指出了具有交互离散选择的空间模型对于创新扩散过程的研究是有用的。具有空间交互作用的离散选择模型的似然函数涉及高维积分,其估计具有相当大的挑战性。积分的维数可以与样本观测的数量一样大。 为了充分发挥这些模型的能力,必须开发计算上易于处理的方法。本项目开发基于模拟估算方法的估算方法。研究了模拟极大似然法、模拟EM算法、模拟得分法和Gibbs抽样法等模拟估计方法的有效性。 这些估计的统计性质进行了研究。除了估计,空间相关性和诊断的检验统计也被开发。 本计画发展计算上容易处理的广义矩量法,以估计任何有限阶空间自回归模型,不论是否有外生变数的存在。 动态离散选择模型在面板数据环境中捕捉动态效应、状态依赖、异质性和虚假相关的各种概念。 这个项目概括了现有的模型,将可能的同时期和跨时间的空间相互作用的影响。离散选择中的空间动力学特别令人感兴趣。 特别注意的是这种面板数据模型的规格和估计。尽管发展计量经济学方法是本项目的主要重点,但对发展中国家的面板数据进行的实证研究表明,新模式是有用的,方法是可行的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lung-fei Lee其他文献
GMM and 2SLS estimation of mixed regressive, spatial autoregressive models
- DOI:
10.1016/j.jeconom.2005.10.004 - 发表时间:
2007-04 - 期刊:
- 影响因子:6.3
- 作者:
Lung-fei Lee - 通讯作者:
Lung-fei Lee
Tobit model with social interactions: Complete vs incomplete information
具有社交互动的 Tobit 模型:完整信息与不完整信息
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:3.1
- 作者:
Chao Yang;Lung-fei Lee;Xi Qu - 通讯作者:
Xi Qu
A Test for Distributional Assumptions for the Stochastic Frontier Functions
- DOI:
10.1016/0304-4076(83)90102-1 - 发表时间:
1983-08 - 期刊:
- 影响因子:6.3
- 作者:
Lung-fei Lee - 通讯作者:
Lung-fei Lee
Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Econometric Models II: Mixed Regressive, Spatial Autoregressive Models
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:3.4
- 作者:
Lung-fei Lee - 通讯作者:
Lung-fei Lee
Lasso Maximum Likelihood Estimation of Parametric Models with Singular Information Matrices
奇异信息矩阵参数模型的Lasso最大似然估计
- DOI:
10.3390/econometrics6010008 - 发表时间:
2018-02 - 期刊:
- 影响因子:1.5
- 作者:
Fei Jin;Lung-fei Lee - 通讯作者:
Lung-fei Lee
Lung-fei Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lung-fei Lee', 18)}}的其他基金
Specification and Estimation of Econometric Models with Interactions
具有交互作用的计量经济模型的规范和估计
- 批准号:
0519204 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Continuing grant
Simulation and Semiparametric Estimation of MicroeconometricModels
微观计量模型的模拟和半参数估计
- 批准号:
9223325 - 财政年份:1993
- 资助金额:
-- - 项目类别:
Continuing Grant
Scientific Workstations for Research in Computationally- Intensive Econometric Methods
用于计算密集型计量经济学方法研究的科学工作站
- 批准号:
9208620 - 财政年份:1992
- 资助金额:
-- - 项目类别:
Standard Grant
Semi-Parametric Estimation of Sample Selection Models
样本选择模型的半参数估计
- 批准号:
9296071 - 财政年份:1991
- 资助金额:
-- - 项目类别:
Continuing Grant
Semi-Parametric Estimation of Sample Selection Models
样本选择模型的半参数估计
- 批准号:
9010516 - 财政年份:1990
- 资助金额:
-- - 项目类别:
Continuing Grant
Semi-Parametric Estimation of Microeconometric Models with Qualitative and Limited Dependent Variables
具有定性和有限因变量的微观计量模型的半参数估计
- 批准号:
8809939 - 财政年份:1988
- 资助金额:
-- - 项目类别:
Continuing Grant
Microeconometric Models with Limited Dependent Variables
具有有限因变量的微观计量经济学模型
- 批准号:
8510473 - 财政年份:1985
- 资助金额:
-- - 项目类别:
Continuing Grant
Econometric Models with Limited Dependent Variables
具有有限因变量的计量经济模型
- 批准号:
8441561 - 财政年份:1984
- 资助金额:
-- - 项目类别:
Standard Grant
Econometric Models With Limited Dependent Variables
因变量有限的计量经济模型
- 批准号:
8300020 - 财政年份:1983
- 资助金额:
-- - 项目类别:
Standard Grant
Econometric Models With Descrete Dependent Variables
具有离散因变量的计量经济模型
- 批准号:
8006481 - 财政年份:1980
- 资助金额:
-- - 项目类别:
Standard Grant
相似国自然基金
高铁对欠发达省域国土空间协调(Spatial Coherence)影响研究与政策启示-以江西省为例
- 批准号:52368007
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高铁影响空间失衡(Spatial Inequality)的多尺度变异机理的理论和实证研究
- 批准号:51908258
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
- 批准号:
NE/Z000246/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Research Grant
Spatial Transcriptomic of Wheat Grain for ion transport (TranScripION)
小麦籽粒离子传输空间转录组学 (TranScripION)
- 批准号:
EP/Z000726/1 - 财政年份:2025
- 资助金额:
-- - 项目类别:
Fellowship
Cubesat Technologies for High Spatial Resolution Astrophysics
用于高空间分辨率天体物理学的立方体卫星技术
- 批准号:
DP240102015 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Situation-aware Multi-sided Personalised Analytics in Spatial Crowdsourcing
空间众包中的态势感知多边个性化分析
- 批准号:
DP240100356 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
Predicting how the inducible defences of large mammals to human predation shape spatial food web dynamics
预测大型哺乳动物对人类捕食的诱导防御如何塑造空间食物网动态
- 批准号:
EP/Y03614X/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant
Spatial representation and updating using a standing locomotion device
使用站立式运动设备进行空间表示和更新
- 批准号:
24K06616 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Elucidating spatial and epigenetic regulation of gene expression during human development using photopatterning and single-cell multiomics
职业:利用光模式和单细胞多组学阐明人类发育过程中基因表达的空间和表观遗传调控
- 批准号:
2339849 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
Doctoral Dissertation Research: Spatial and Geological Mapping in Local Communities
博士论文研究:当地社区的空间和地质测绘
- 批准号:
2342887 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Environmental and ecological drivers of tropical peatland methane dynamics across spatial scales
热带泥炭地甲烷空间尺度动态的环境和生态驱动因素
- 批准号:
NE/X015238/1 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Research Grant














{{item.name}}会员




