Development of Algorithms for DFT Calculations of the Rate of Transitions In Ground and Excited States
基态和激发态跃迁速率 DFT 计算算法的开发
基本信息
- 批准号:0111468
- 负责人:
- 金额:$ 31.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-15 至 2005-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Hannes Jonsson of the University of Washington is supported by the Theoretical and Computational Chemistry Program to develop methods for calculating transition rates in materials in combination with a plane-wave-based density functional theory (DFT) description of the energetics. Methods for finding mechanisms and transmission rates, such as the dimer method, climbing image-nudged elastic band method, and optimal hyperplanar transition state theory, will be explored and implemented. Methodologies will be applied to study diffusion and growth in semiconductors, in particular the growth of silicon/germanium surface mounds that may be useful in opto-electronic applications. Simulations that combine DFT estimates of transmission rates and kinetic Monte Carlo simulations of long time dynamics will be carried out to enable careful comparisons to new experimental data. This project will also begin developing techniques to calculate excited states in condensed matter. A many-body perturbation expansion that builds in corrections to the DFT mean field description will be tested on small molecules, and then applied to study optical properties and photoinduced catalysis on titanium dioxide surfaces. The first principles prediction of technologically important material properties is a longstanding goal. The combination of efficient theoretical chemistry techniques and implementation on computer clusters or parallel computers finally can bring this elusive goal within reach. The outcomes of this research are anticipated to contribute to new knowledge of quantum dots, which have technological promise for use as optical switches. As well, studies of titanium dioxide photocatalysis are expected to improve understanding of important applications for this material that include harmful microorganism destruction, cancer cell inactivation, and oil spill cleanup.
华盛顿大学的 Hannes Jonsson 在理论和计算化学项目的支持下,开发了结合基于平面波的密度泛函理论 (DFT) 能量学描述来计算材料转变率的方法。 将探索和实施寻找机制和传输速率的方法,例如二聚体方法、攀爬图像推动弹性带方法和最佳超平面过渡态理论。 方法将用于研究半导体的扩散和生长,特别是可能在光电应用中有用的硅/锗表面丘的生长。 将进行结合传输速率的 DFT 估计和长时间动态的动力学蒙特卡罗模拟的模拟,以便能够与新的实验数据进行仔细比较。 该项目还将开始开发计算凝聚态物质激发态的技术。 将在小分子上测试对 DFT 平均场描述进行修正的多体微扰展开,然后应用于研究二氧化钛表面的光学特性和光诱导催化作用。 对技术上重要的材料特性进行第一性原理预测是一个长期目标。 有效的理论化学技术与计算机集群或并行计算机上的实现相结合,最终可以使这一难以实现的目标触手可及。 这项研究的成果预计将有助于增进量子点的新知识,量子点具有用作光开关的技术前景。 此外,二氧化钛光催化的研究有望提高人们对这种材料重要应用的理解,包括破坏有害微生物、灭活癌细胞和清理溢油。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hannes Jonsson其他文献
Hannes Jonsson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hannes Jonsson', 18)}}的其他基金
U.S.-Iceland Workshop: Simulations of Long Time Scale Dynamics: Molecular and Continuum Descriptions; Reykjavik, Iceland, June 26-30, 2000
美国-冰岛研讨会:长时尺度动力学模拟:分子和连续体描述;
- 批准号:
0086266 - 财政年份:2000
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
KDI: Amorphous and Crystalline Ice Growth
KDI:非晶态和晶态冰生长
- 批准号:
9980125 - 财政年份:1999
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
Development of Computer Algorithms for Density Functional Theory Simulations and Applications to Crystal Growth
密度泛函理论模拟计算机算法的开发及其在晶体生长中的应用
- 批准号:
9710995 - 财政年份:1997
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
Computer Simulations of Thin Films and Interfaces
薄膜和界面的计算机模拟
- 批准号:
9217774 - 财政年份:1993
- 资助金额:
$ 31.8万 - 项目类别:
Continuing Grant
Development of Parallel Car-Parrinello Code and Application to Simulations of Liquid Silicon and Aluminum
并行Car-Parrinello代码的开发及其在液态硅和铝模拟中的应用
- 批准号:
9217294 - 财政年份:1992
- 资助金额:
$ 31.8万 - 项目类别:
Continuing Grant
Computational Chemistry Teaching Facility at the University of Washington
华盛顿大学计算化学教学设施
- 批准号:
9114495 - 财政年份:1991
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 31.8万 - 项目类别:
Research Grant