Managing Uncertainty in Bilevel Robust Design Optimization

管理双层稳健设计优化中的不确定性

基本信息

  • 批准号:
    0114975
  • 负责人:
  • 金额:
    $ 24.18万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2001
  • 资助国家:
    美国
  • 起止时间:
    2001-09-01 至 2006-08-31
  • 项目状态:
    已结题

项目摘要

This grant provides funding for the development of a collaborative optimization framework for the robust design of complex engineering systems such as automobiles, aircraft or consumer products. The collaborative optimization framework will account for and manage the uncertainties in the performance predictions generated by the computer simulation tools used for the design of these systems. Each computer simulation model is an abstraction of reality and has some uncertainty associated with its performance predictions. This uncertainty must be accounted for in the simulation based design process. An implicit method for estimating system performance uncertainties within a bilevel optimization algorithm that employs decomposition techniques to facilitate distributed computation will be developed. The methodology will account for both the uncertainty associated with design inputs and the uncertainty of performance predictions from each of the simulation tools. A mathematical proof of convergence will be developed to validate the bilevel optimization algorithm being developed in this investigation. The framework will be implemented in a distributed computing environment providing for parallel computation and concurrent design. Industry partners will test the framework and measure the computational improvements using a suite of benchmark test problems.It is anticipated that the use of the collaborative optimization framework developed in this research will lead to reduced product development times at reduced cost and risk. The collaborative optimization framework will facilitate the concurrent design of complex engineering systems in a parallel-computing environment. The benefits of parallel computation lead to reductions in product development times. The ability to manage uncertainty and risk in this parallel design environment will ensure robust performance of the resulting system. The development of the non-deterministic collaborative optimization framework will demonstrate that designers can effectively manage both the uncertainty and risk associated with the simulation based design of new products in a parallel computing environment.
该赠款为开发用于汽车、飞机或消费品等复杂工程系统的稳健设计的协作优化框架提供资金。协同优化框架将考虑和管理这些系统的设计所使用的计算机模拟工具所产生的性能预测的不确定性。每个计算机模拟模型都是现实的抽象,并且具有与其性能预测相关的一些不确定性。在基于仿真的设计过程中必须考虑这种不确定性。一个隐式的方法,估计系统性能的不确定性内的一个双层优化算法,采用分解技术,以促进分布式计算将开发。该方法将考虑与设计输入相关的不确定性和每个模拟工具的性能预测的不确定性。一个数学证明的收敛性将开发,以验证在这项调查中开发的双层优化算法。该框架将在一个分布式计算环境中实施,提供并行计算和并行设计。业界合作伙伴将测试框架,并使用一套基准测试问题来衡量计算的改进。预计使用本研究中开发的协同优化框架将导致减少产品开发时间,降低成本和风险。协同优化框架将促进并行计算环境中的复杂工程系统的并行设计。并行计算的好处导致产品开发时间的减少。在这种并行设计环境中管理不确定性和风险的能力将确保最终系统的稳健性能。的非确定性协同优化框架的发展将表明,设计人员可以有效地管理的不确定性和风险与基于仿真的新产品设计在并行计算环境中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Renaud其他文献

John Renaud的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Renaud', 18)}}的其他基金

Simulation Uncertainty in Multidisciplinary Design
多学科设计中的仿真不确定性
  • 批准号:
    9812857
  • 财政年份:
    1998
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Continuing Grant
NSF Young Investigator: Accounting for Uncertainty in Multidisciplinary Design and Manufacturing Optimization
NSF 青年研究员:解释多学科设计和制造优化中的不确定性
  • 批准号:
    9457179
  • 财政年份:
    1994
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Continuing Grant
Research Initiation Award: Multidisciplinary Design Optimization Development and Application in Electronic Package Design
研究启动奖:多学科设计优化开发及在电子封装设计中的应用
  • 批准号:
    9308083
  • 财政年份:
    1993
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Continuing Grant

相似海外基金

UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
  • 批准号:
    EP/Y000145/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Research Grant
CAREER: Game Theoretic Models for Robust Cyber-Physical Interactions: Inference and Design under Uncertainty
职业:稳健的网络物理交互的博弈论模型:不确定性下的推理和设计
  • 批准号:
    2336840
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: DRMS:Group cognition, stress arousal, and environment feedbacks in decision making and adaptation under uncertainty
合作研究:DRMS:不确定性下决策和适应中的群体认知、压力唤醒和环境反馈
  • 批准号:
    2343727
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Continuing Grant
CAREER: Robust Reinforcement Learning Under Model Uncertainty: Algorithms and Fundamental Limits
职业:模型不确定性下的鲁棒强化学习:算法和基本限制
  • 批准号:
    2337375
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Continuing Grant
Data Complexity and Uncertainty-Resilient Deep Variational Learning
数据复杂性和不确定性弹性深度变分​​学习
  • 批准号:
    DP240102050
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Discovery Projects
High Dimensional Approximation, Learning, and Uncertainty
高维近似、学习和不确定性
  • 批准号:
    DP240100769
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Discovery Projects
TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Research Grant
UQ4FM: Uncertainty Quantification for Flood Modelling
UQ4FM:洪水建模的不确定性量化
  • 批准号:
    EP/X041093/1
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Research Grant
Predicting future biodiversity of ecosystem service providers in Japan using new approaches to quantify and reduce uncertainty
使用量化和减少不确定性的新方法来预测日本生态系统服务提供者的未来生物多样性
  • 批准号:
    24K09176
  • 财政年份:
    2024
  • 资助金额:
    $ 24.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了